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How to Use Advanced Algebra II
This module contains a table of every module within the three books of
Kenny Felder's course on "Algebra II", with links to the modules.

Over a period of time, I have developed a set of in-class assignments,
homeworks, and lesson plans, that work for me and for other people who
have tried them. The complete set comprises three separate books that work
together:

The Homework and Activities Book contains in-class and homework
assignments that are given to the students day-by-day.
The Concepts Book provides conceptual explanations, and is intended
as a reference or review guide for students; it is not used when
teaching the class.
The Teacher's Guide provides lesson plans; it is your guide to how I
envisioned these materials being used when I created them (and how I
use them myself).

Instructors should note that this book probably contains more information
than you will be able to cover in a single school year. I myself do not teach
from every chapter in my own classes, but have chosen to include these
additional materials to assist you in meeting your own needs. As you will
likely need to cut some sections from the book, I strongly recommend that
you spend time early on to determine which modules are most important for
your state requirements and personal teaching style.

One more warning is important: these materials were designed for an
Advanced Algebra II course. For such a course, I hope this will provide
you with ready-to-use textbook and lesson plans. If you are teaching a
Standard or Remedial-level course, these materials will still be useful, but
you will probably have to cut or reduce some of the most conceptual
material, and supplement it with more drill-and-practice than I provide.

The following table of contents provides a list of topics covered in this
course with links to each module. You can use these links to move between
the books or to jump ahead to any topic.
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Conceptual
Explanations

[col10624]

Activities
&
Homework

[col10686]

Teacher's
Guide

[col10687]

Adding and
Subtracting
Rational
Expressions

[m18303]

Rational
Expressions [m19278] [m19488]

Homework:
Rational
Expressions

[m19275]

Rational
Equations [m18302] [m19279] [m19489]

Homework:
Rational
Expressions and
Equations

[m19277]

Dividing
Polynomials [m18299] [m19276] [m19487]

Sample Test:
Rational
Expressions

[m19274]

Radicals

Radical
Concepts [m18244]
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&
Homework

[col10686]

Teacher's
Guide

[col10687]

Radicals (*aka
Roots) [m19420]

Properties of
Radicals [m18271]

Radicals and
Exponents [m19419]

Some Very
Important
Generalizations

[m19422]

Simplifying
Radicals [m18274] [m19421]

Introduction [m19484]

Homework:
Radicals [m19270]

A Bunch of
Other Stuff
About Radicals

[m19263] [m19483]

Homework: A
Bunch of Other
Stuff About
Radicals

[m19264]
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Explanations

[col10624]

Activities
&
Homework

[col10686]

Teacher's
Guide

[col10687]

Radical
Equations [m18273] [m19272] [m19485]

Homework:
Radical
Equations

[m19271]

Sample Test:
Radicals [m19273]

Imaginary
Numbers

Introduction [m19424]

Imaginary
Numbers
Concepts

[m18285]

Playing with i [m18286]

Introduction to
Imaginary
Numbers

[m21990]

Imaginary
Numbers [m19129]

Homework:
Imaginary
Numbers

[m19130]
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Explanations

[col10624]

Activities
&
Homework

[col10686]

Teacher's
Guide

[col10687]

Complex
Numbers [m18282] [m19128] [m19423]

Equality and
Inequality in
Complex
Numbers

[m18283]

Homework:
Complex
Numbers

[m19132]

Quadratic
Equations and
Complex
Numbers

[m18288]

Me, Myself, and
the Square Root
of i

[m19134] [m19425]

The Many Merry
Cube Roots of -1 [m19131]

Homework:
Quadratic
Equations and
Complex
Numbers

[m19127]
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Teacher's
Guide

[col10687]

A Few "Extras
For Experts"
Thoughts on
Imaginary
Numbers

[m18284]

Sample Test:
Complex
Numbers

[m19133]

Matrices

Matrices [m18311]

Introduction to
Matrices [m19206] [m19445]

Homework:
Introduction to
Matrices

[m19205]

Multiplying
Matrices [m18291]

Multiplying
Matrices I [m19207] [m19448]

Homework:
Multiplying
Matrices I

[m19196]
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Guide
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Multiplying
Matrices II [m19208] [m19449]

Homework:
Multiplying
Matrices II

[m19201]

The Identity
Matrix [m18293]

The Inverse
Matrix [m18294]

The Identity and
Inverse Matrices [m19213] [m19443]

Homework: The
Identity and
Inverse Matrices

[m19194]

The Inverse of
the Generic 2x2
Matrix

[m19214] [m19446]

Using Matrices
for
Transformations

[m19221] [m19451]
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&
Homework

[col10686]

Teacher's
Guide

[col10687]

Homework:
Using Matrices
for
Transformations

[m19190]

Sample Test:
Matrices I [m19210]

Matrices on a
TI-83 or TI-84
Calculator

[m18290]

Matrices on the
Calculator [m19447]

Homework:
Calculators [m19188]

Determinants [m18289] [m19442]

Homework:
Determiners [m19193]

Solving Linear
Equations [m18292] [m19212] [m19450]

Homework:
Solving Linear
Equations

[m19204]
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Explanations

[col10624]

Activities
&
Homework

[col10686]

Teacher's
Guide

[col10687]

Sample Test:
Matrices II [m19209]

Modeling Data
with Functions

Introduction [m19454]

Data Modeling
Concepts [m18277]

Direct and
Inverse Variation [m18281] [m19452]

Direct Variation [m19228]

Homework:
Inverse Variation [m19227]

Homework:
Direct and
Inverse Variation

[m19225]

Finding a Linear
Function For
Any Two Points

[m18278]
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Explanations

[col10624]

Activities
&
Homework

[col10686]

Teacher's
Guide

[col10687]

Finding a
Parabolic
Function For
Any Three
Points

[m18279]

From Data
Points to
Functions

[m19224]

Homework:
From Data
Points to
Functions

[m19232]

Calculator
Regression [m18280] [m19453]

Homework:
Calculator
Regression

[m19231]

Sample Test:
Modeling Data
With Functions

[m19222]

Conics

Introduction [m19307]

Conic Concepts [m18265]
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&
Homework

[col10686]

Teacher's
Guide

[col10687]

A Mathematical
Look at Distance [m18246]

Distance [m19081] [m19299]

Homework:
Distance [m19086]

Circles [m18245] [m19298]

All the Points
Equidistant from
a Given Point

[m19078]

Homework:
Circles [m19084]

Parabolas [m18268]

All the Points
Equidistant from
a Point and a
Line

[m19079]

Parabolas: Day 1 [m19315]

Homework:
Vertical and
Horizontal
Parabolas

[m19086]
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[col10624]
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&
Homework

[col10686]

Teacher's
Guide

[col10687]

Parabolas: Day 2 [m19313]

Parabolas: From
Definition to
Equation

[m19092] [m19311]

Sample Test:
Distance,
Circles, and
Parabolas

[m19094]

Ellipses [m18247] [m19303]

Distance from
this point plus
distance to that
point is Constant

[m19083]

Homework:
Ellipses [m19088]

Ellipses: From
Definition to
Equation

[m19095] [m19305]

Hyperbolas [m18249] [m19306]
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Explanations

[col10624]
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&
Homework

[col10686]

Teacher's
Guide

[col10687]

Distance from
this point minus
distance from
that point is
constant

[m19082]

Homework:
Hyperbolas [m19089]

A Brief Recap:
How Do You
Tell What Shape
It Is?

[m18270]

Sample Test:
Conics 2
(Ellipses and
Hyperbolas)

[m19093]

Sequences and
Series

Prerequisites [m19495]

Sequences [m19076]

Arithmetic and
Geometric
Sequences

[m19285] [m19490]
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&
Homework

[col10686]

Teacher's
Guide

[col10687]

Homework:
Arithmetic and
Geometric
Sequences

[m19284]

Series [m19074]

Series and Series
Notation [m19491]

Homework:
Series and Series
Notation

[m19280]

Arithmetic and
Geometric
Series

[m19494]

Homework:
Arithmetic and
Geometric
Series

[m19282]

Proof by
Induction [m19075] [m19492]

Homework:
Proof by
Induction

[m19281]

Extra Credit [m19493]
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&
Homework

[col10686]

Teacher's
Guide

[col10687]

Sample Test:
Sequences and
Series

[m19283]

Probability

How Many
Groups? [m19236]

Tree Diagrams [m19463]

Homework: Tree
Diagrams [m19234]

Probability
Concepts [m19073]

Introduction to
Probability [m19237] [m19461]

Homework: The
Multiplication
Rule

[m19233]

Trickier
Probability
Problems

[m19464]
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Homework:
Trickier
Probability
Problems

[m19235]

Permutations [m19072] [m19462]

Homework:
Permutations [m19241]

Combinations [m19071] [m19460]

Homework:
Permutations
and
Combinations

[m19240]

Sample Test:
Probability [m19238]
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Function Concepts
This module provides an introduction to the concept of functions.

The unit on functions is the most important in the Algebra II course,
because it provides a crucial transition point. Roughly speaking…

Before Algebra I, math is about numbers.
Starting in Algebra I, and continuing into Algebra II, math is about
variables.
Beginning with Algebra II, and continuing into Calculus, math is about
functions.

Each step builds on the previous step. Each step expands the ability of
mathematics to model behavior and solve problems. And, perhaps most
crucially, each step can be frightening to a student. It can be very
intimidating for a beginning Algebra student to see an entire page of
mathematics that is covered with letters, with almost no numbers to be
found!

Unfortunately, many students end up with a very vague idea of what
variables are (“That’s when you use letters in math”) and an even more
vague understanding of functions (“Those things that look like f(x) or
something”). If you leave yourself with this kind of vague understanding of
the core concepts, the lessons will make less and less sense as you go on:
you will be left with the feeling that “I just can’t do this stuff” without
realizing that the problem was all the way back in the idea of a variable or
function.

The good news is, variables and functions both have very specific meanings
that are not difficult to understand.



What is a Variable?
This module defines what a variable is and what it does.

A variable is a letter that stands for a number you don’t know, or a number
that can change.

A few examples:

Example:
Good Examples of Variable Definitions

“Let p be the number of people in a classroom.”
“Let A be John’s age, measured in years.”
“Let h be the number of hours that Susan has been working.”

In each case, the letter stands for a very specific number. However, we use a
letter instead of a number because we don’t know the specific number. In
the first example above, different classrooms will have different numbers of
people (so p can be different numbers in different classes); in the second
example, John’s age is a specific and well-defined number, but we don’t
know what it is (at least not yet); and in the third example, h will actually
change its value every hour. In all three cases, we have a good reason for
using a letter: it represents a number, but we cannot use a specific number
such as “–3” or “ 4 1

2
”.

Example:
Bad Examples of Variable Definitions

“Let n be the nickels.”
“Let M  be the number of minutes in an hour.”



The first error is by far the most common. Remember that a variable always
stands for a number. “The nickels” are not a number. Better definitions
would be: “Let n be the number of nickels” or “Let n be the total value of
the nickels, measured in cents” or “Let n be the total mass of the nickels,
measured in grams.”

The second example is better, because “number of minutes in an hour” is a
number. But there is no reason to call it “The Mysterious Mr. M” because
we already know what it is. Why use a letter when you just mean “60”?

Bad variable definitions are one of the most common reasons that
students get stuck on word problems—or get the wrong answer. The
first type of error illustrated above leads to variable confusion: n will end up
being used for “number of nickels” in one equation and “total value of the
nickels” in another, and you end up with the wrong answer. The second type
of error is more harmless—it won’t lead to wrong answers—but it won’t
help either. It usually indicates that the student is asking the wrong question
(“What can I assign a variable to?”) instead of the right question (“What
numbers do I need to know?”)

Variables aren’t all called x. Get used to it.

Many students expect all variables to be named x, with possibly an
occasional guest appearance by y. In fact, variables can be named with
practically any letter. Uppercase letters, lowercase letters, and even Greek
letters are commonly used for variable names. Hence, a problem might start
with “Let H be the home team’s score and V  be the visiting team’s score.”

If you attempt to call both of these variables x, it just won’t work. You
could in principle call one of them x and the other y, but that would make it
more difficult to remember which variable goes with which team. It is
important to become comfortable using a wide range of letters. (I do,
however, recommend avoiding the letter o whenever possible, since it looks
like the number 0.)



Function Concepts -- What is a Function?

A function is neither a number nor a variable: it is a process for turning
one number into another. For instance, “Double and then add 6” is a
function. If you put a 4 into that function, it comes out with a 14. If you put
a 1

2

into that function, it comes out with a 7.

The traditional image of a function is a machine, with a slot on one side
where numbers go in and a slot on the other side where numbers come out.

A number goes in. A number comes out.
The function is the machine, the
process that turns 4 into 14 or 5 into 16 or 100 into 206.

5 → → 16

The point of this image is that the function is not the numbers, but the
machine itself—the process, not the results of the process.

The primary purpose of “The Function Game” that you play on Day 1 is to
get across this idea of a numerical process. In this game, one student (the
“leader”) is placed in the role of a function. “Whenever someone gives you
a number, you double that number, add 6, and give back the result.” It
should be very clear, as you perform this role, that you are not modeling a
number, a variable, or even a list of numbers. You are instead modeling a
process—or an algorithm, or a recipe—for turning numbers into other
numbers. That is what a function is.



The function game also contains some more esoteric functions: “Respond
with –3 no matter what number you are given,” or “Give back the lowest
prime number that is greater than or equal to the number you were given.”
Students playing the function game often ask “Can a function do that?” The
answer is always yes (with one caveat mentioned below). So another
purpose of the function game is to expand your idea of what a function can
do. Any process that consistently turns numbers into other numbers, is a
function.

By the way—having defined the word “function” I just want to say
something about the word “equation.” An “equation” is when you “equate”
two things—that is to say, set them equal. So x2 − 3 is a function, but it is
not an equation. x2

− 3 = 6 is an equation. An “equation” always has an
equal sign in it.



The Rule of Consistency
This module discusses how functions must be consistent.

There is only one limitation on what a function can do: a function must be
consistent.

For instance, the function in the above drawing is given a 5, and gives back
a 16. That means this particular function turns 5 into 16—always. That
particular function can never take in a 5 and give back a 14. This “rule of
consistency” is a very important constraint on the nature of functions.

Note:This rule does not treat the inputs and outputs the same!

For instance, consider the function y = x2. This function takes both 3 and
-3 and turns them into 9 (two different inputs, same output). That is
allowed. However, it is not reversible! If you take a 9 and turn it into both a
3 and a –3 (two different outputs, same input), you are not a function.

If 3 goes in, 9 comes out. If –3 goes in, 9 also comes out. No problem: x2 is
a function.

→ 9
3 →

−3 →



If 9 goes in, both –3 and 3 come out. This violates the rule of consistency:
no function can do this

→ 9

This asymmetry has the potential to cause a great deal of confusion, but it is
a very important aspect of functions.

3 →

−3 →



Four Ways to Represent a Function
This module discusses how it is possible to describe functions in four
different ways: graphically, verbally, algebraically, and numerically.

Modern Calculus texts emphasize that a function can be expressed in four
different ways.

1. Verbal - This is the first way functions are presented in the function
game: “Double and add six.”

2. Algebraic - This is the most common, most concise, and most
powerful representation: 2x + 6
. Note that in an algebraic
representation, the input number is represented as a variable (in this
case, an x).

3. Numerical - This can be done as a list of value pairs, as (4,14)
—
meaning that if a 4 goes in, a 14 comes out. (You may recognize this as
(x,y) points used in graphing.)

4. Graphical - This is discussed in detail in the section on graphing.

These are not four different types of functions: they are four different views
of the same function. One of the most important skills in Algebra is
converting a function between these different forms, and this theme will
recur in different forms throughout the text.



Domain and Range
This module defines the domain and range of a function.

Consider the function
y = √x. If this function is given a 9 it hands back a
3. If this function is given a 2 it hands back…well, it hands back
√2, which
is approximately 1.4. The answer cannot be specified exactly as a fraction
or decimal, but it is a perfectly good answer nonetheless.

On the other hand, what if this function is handed –4? There is no √−4, so
the function has no number to hand back. If our function is a computer or
calculator, it responds with an error message. So we see that this function is
able to respond to the numbers 9 and 2, but it is not able to respond in any
way to the number -4. Mathematically, we express this by saying that 9 and
2 are in the “domain” of the square root function, and –4 is not in the
domain of this function.

Domain
The domain of a function is all the numbers that it can successfully act
on. Put another way, it is all the numbers that can go into the function.

A square root cannot successfully act on a negative number. We say that
“The domain of √x is all numbers
[missing_resource: graphics1.wmf]

such that
[missing_resource: graphics2.wmf]

” meaning that if you give this function zero or a positive number, it can act
on it; if you give this function a negative number, it cannot.

A subtler example is the function
y = √x + 7. Does this function have the
same domain as the previous function? No, it does not. If you hand this
function a –4 it successfully hands back √3 (about 1.7). –4 is in the domain
of this function. On the other hand, if you hand this function a –8 it attempts
to take √−1 and fails; –8 is not in the domain of this function. If you play
with a few more numbers, you should be able to convince yourself that the
domain of this function is all numbers x such that
x ≥ −7.



You are probably familiar with two mathematical operations that are not
allowed. The first is, you are not allowed to take the square root of a
negative number. As we have seen, this leads to restrictions on the domain
of any function that includes square roots.

The second restriction is, you are not allowed to divide by zero. This can
also restrict the domain of functions. For instance, the function
y = 1

x2−4

has as its domain all numbers except x = 2 and
x = −2. These two
numbers both cause the function to attempt to divide by 0, and hence fail. If
you ask a calculator to plug x = 2 into this function, you will get an error
message.

So: if you are given a function, how can you find its domain? Look for any
number that puts a negative number under the square root; these numbers
are not in the domain. Look for any number that causes the function to
divide by zero; these numbers are not in the domain. All other numbers are
in the domain.

Function Domain Comments

√x x ≥ 0

You can take the square root of
0, or of any positive number,
but you cannot take the square
root of a negative number.



Function Domain Comments

√x + 7 x ≥ −7

If you plug in any number
greater than or equal to –7,
you will be taking a legal square
root. If you plug in a number
less than –7, you will be taking
the square root of a negative
number.This domain can also be
understood graphically: the
graph
y = √x has been moved
7 units to the left. See
“horizontal permutations”
below.

1
x x ≠ 0

In other words, the domain is
“all numbers except 0.” You are
not allowed to divide by 0. You
are allowed to divide by
anything else.

1
x−3 x ≠ 3

If x = 3 then you are dividing
by 0, which is not allowed. If
x = 0you are dividing by –3,
which is allowed. So be careful!
The rule is not “when you are
dividing, x cannot be 0.” The
rule is “
x can never be any
value that would put a 0 in the
denominator.”

1
x2−4 x ≠ ±2

Or, “
xcan be any number
except 2 or –2.” Either of these

x values will put a 0 in the
denominator, so neither one is
allowed.



Function Domain Comments

2x + x2 − 3x + 4
All
numbers

You can plug any x value into
this function and it will come
back with a number.

√x−3
x−5

In words, the domain is all
numbers greater than or
equal to 3, except the number
5. Numbers less than 3 put
negative numbers under the
square root; 5 causes a division
by 0.

You can confirm all these results with your calculator; try plugging numbers
into these functions, and see when you get errors!

A related concept is range.

Range
The range of a function is all the numbers that it may possibly
produce. Put another way, it is all the numbers that can come out of
the function.

To illustrate this example, let us return to the function
y = √x + 7. Recall
that we said the domain of this function was all numbers x such that

x ≥ −7; in other words, you are allowed to put any number greater than or
equal to –7 into this function.

What numbers might come out of this function? If you put in a –7 you get
out a 0. (
√0 = 0) If you put in a –6 you get out √1 = 1. As you increase
the x value, the y values also increase. However, if you put in x = −8
nothing comes out at all. Hence, the range of this function is all numbers y
such that
y ≥ 0. That is, this function is capable of handing back 0 or any
positive number, but it will never hand back a negative number.

x ≥ 3

x ≠ 5



It’s easy to get the words domain and range confused—and it’s important to
keep them distinct, because although they are related concepts, they are
different from each other. One trick that sometimes helps is to remember
that, in everyday useage, “your domain” is your home, your land—it is
where you begin. A function begins in its own domain. It ends up
somewhere out on the range.

A different notation for domain and range

Domains and ranges above are sometimes expressed as intervals, using the
following rules:

Parentheses () mean “an interval starting or ending here, but not
including this number”
Square brackets []
mean “an interval starting or ending here, including
this number”

This is easiest to explain with examples.

This
notation... ...means this...

...or in
other words

(−3,5)
All numbers between –3 and 5, not
including –3 and 5. −3 < x < 5

[−3,5]
All numbers between –3 and 5,
including –3 and 5. −3 ≤ x ≤ 5

[−3,5)
All numbers between –3 and 5,
including –3 but not 5. −3 ≤ x < 5



This
notation... ...means this...

...or in
other words

(−∞,10]
All numbers less than or equal to
10. x ≤ 10

(23,∞) All numbers greater than 23. x > 23

(−∞,4)
(4,∞)

All numbers less than 4, and all
numbers greater than 4. In other
words, all numbers except 4.

x ≠ 4



Why are functions so important that they form the heart of math from
Algebra II onward?

Functions are used whenever one variable depends on another variable.
This relationship between two variables is the most important in
mathematics. It is a way of saying “If you tell me what x  is, I can tell you
what y  is.” We say that y  “depends on” x , or y
“is a function of” x .

A few examples:

Example:
Function Concepts -- Functions in the Real World

"The area of a circle depends on its radius."
"The amount of money Alice makes depends on the number of hours
she works."
“Max threw a ball. The height of the ball depends on how many
seconds it has been in the air.”

In each case, there are two variables. Given enough information about the
scenario, you could assert that if you tell me this variable, I will tell you
that one. For instance, suppose you know that Alice makes $100 per day.
Then we could make a chart like this.

If Alice works this many
days...

...she makes this many
dollars



If Alice works this many
days...

...she makes this many
dollars

0 0

1 100

1½ 150

8 800

If you tell me how long she has worked, I will tell you how much money
she has made. Her earnings “depend on” how long she works.

The two variables are referred to as the dependent variable and the
independent variable. The dependent variable is said to “depend on” or
“be a function of” the independent variable. “The height of the ball is a
function of the time.”

Example:
Bad Examples of Functional Relationships

"The number of Trojan soldiers depends on the number of Greek
soldiers."
"The time depends on the height of the ball."

The first of these two examples is by far the most common. It is simply not
true. There may be a relationship between these two quantities—for
instance, the sum of these two variables might be the total number of
soldiers, and the difference between these two quantities might suggest
whether the battle will be a fair one. But there is no dependency
relationship—that is, no way to say “If you tell me the number of Greek



soldiers, I will tell you the number of Trojan soldiers”—so this is not a
function.

The second example is subtler: it confuses the dependent and the
independent variables. The height depends on the time, not the other way
around. More on this in the discussion of “Inverse Functions".



Function Notation
This module describes notation for functions.

Function Notation

Functions are represented in math by parentheses. When you write
f(x)
you indicate that the variable
f is a function of—or depends on—the
variable
x.

For instance, suppose
f(x) = x2 + 3x . This means that f is a function that
takes whatever you give it, and squares it, and multiplies it by 3, and adds
those two quantities.

The notation f(7) means “plug the number 7 into the function
f.” It does
not indicate that you are multiplying
f times 7. To evaluate
f(7) you take
the function
f(x) and replace all occurrences of the variable x with the
number 7. If this function is given a 7 it will come out with a 70.

If we write
f(y) = y2 + 3y we have not specified a different function.
Remember, the function is not the variables or the numbers, it is the
process. f(y) = y2 + 3y also means “whatever number comes in, square it,
multiply it by 3, and add those two quantities.” So it is a different way of
writing the same function.

7 →

10 →

x →

y →

a dog →

→ f(7) = 72 + 3(7) = 70

→ f(10) = 102 + 3(10) = 130

→ f(x) = x2 + 3x

→ f(y) = y2 + 3y

→ f(dog) = (dog)
2

+ 3(dog)

(*not in the domain)



Just as many students expect all variables to be named
x, many students—
and an unfortunate number of parents—expect all functions to be named
f.
The correct rule is that—whenever possible—functions, like variables,
should be named descriptively. For instance, if Alice makes $100/day, we
might write:

Let m equal the amount of money Alice has made (measured in
dollars)
Let t equal the amount of time Alice has worked (measured in days)
Then,
m(t) = 100t

This last equation should be read “
m is a function of t (or
m depends on
t).
Given any value of the variable
t, you can multiply it by 100 to find the
corresponding value of the variable m.”

Of course, this is a very simple function! While simple examples are helpful
to illustrate the concept, it is important to realize that very complicated
functions are also used to model real world relationships. For instance, in
Einstein’s Special Theory of Relativity, if an object is going very fast, its
mass is multiplied by
 1

√1− v2

9⋅1016

. While this can look extremely

intimidating, it is just another function. The speed v is the independent
variable, and the mass m is dependent. Given any speed v you can
determine how much the mass m is multiplied by.



Algebraic Generalizations
This module discusses the generalizations of algebraic functions and their
implications.

When you have a “generalization,” you have one broad fact that allows you to
assume many specific facts as examples.

Example:
Generalization: “Things fall down when you drop them.”
Specific facts, or examples:

Leaves fall down when you drop them
Bricks fall down when you drop them
Tennis balls fall down when you drop them

If any one of the individual statements does not work, the generalization is invalid.
(This generalization became problematic with the invention of the helium balloon.)

Scientists tend to work empirically, meaning they start with the specific facts and
work their way back to the generalization. Generalizations are valued in science
because they bring order to apparently disconnected facts, and that order in turn
suggests underlying theories.

Mathematicians also spend a great deal of time looking for generalizations. When
you have an “algebraic generalization” you have one algebraic fact that allows you
to assume many numerical facts as examples.

Consider, for instance, the first two functions in the function game.

1. Double the number, then add six.
2. Add three to the number, then double.

These are very different “recipes.” However, their inclusion in the function game is
a bit unfair, because—here comes the generalization—these two functions will
always give the same answer. Whether the input is positive or negative, integer or
fraction, small or large, these two functions will mimic each other perfectly. We can
express this generalization in words.



Example:
Generalization: If you plug a number into the function double and add six, and
plug the same number into the function add three and double, the two operations
will give the same answer.
Specific facts, or examples:

If you double –5 and add six; or, if you add –5 to 3 and then double; you end
up with the same answer.
If you double 13 and add six; or, if you add 13 to 3 and then double; you end
up with the same answer.

There is literally an infinite number of specific claims that fit this pattern. We don’t
need to prove or test each of these claims individually: once we have proven the
generalization, we know that all these facts must be true.

We can express this same generalization pictorially by showing two “function
machines” that always do the same thing.

−5 →

0 →

13 →

→ 2(−5) + 6 = −4

→ 2(0) + 6 = 6

→ 2(13) + 6 = 32

−5 →

0 →

13 →

→ 2(−5) + 6 = −4

→ 2(0) + 6 = 6

→ 2(13) + 6 = 32



But the most common way to express this generalization is algebraically, by
asserting that these two functions equal each other.
Equation:

2x + 6 = 2(x + 3)

Many beginning Algebra II students will recognize this as the distributive property.
Given 2(x + 3) they can correctly turn it into 2x + 6. But they often fail to
realize what this equality means—that given the same input, the two functions
will always yield the same output.

Example:
Generalization:
2x + 6 = 2(x + 3)
Specific facts, or examples:

(2 × −5) + 6 = 2 × (−5 + 3)
(2 × 0) + 6 = 2 × (0 + 3)
(2 × 13) + 6 = 2 × (13 + 3)

It’s worth stopping for a moment here to think about the = symbol. Whenever it is
used, = indicates that two things are the same. However, the following two
equations use the = in very different ways.
Equation:

2x2 + 5x = 3

Equation:

2x2 − 18

x + 3
= 2x − 6

In the first equation, the = challenges you to solve for x. “Find all the x values that
make this equation true.” The answers in this case are x = 1

2  and
x = −3. If you



plug in either of these two x-values, you get a true equation; for any other x-value,
you get a false equation.

The second equation cannot be solved for x; the = sign in this case is asserting an
equality that is true for any x-value. Let’s try a few.

Example:
Generalization:
 2x2−18

x+3 = 2x − 6

Specific facts, or examples:

x = 3
2(3)2−18

(3)+3
= 18−18

6
= 0 2(3) − 6 = 0
✓

x = −2
2(−2)2−18

(−2)+3
= 8−18

1
= −10

2(−2) − 6 = −10
✓

x = 0
2(0)2−18

(0)+3
= 0−18

3
= −6 2(0) − 6 = −6
✓

x = 1
2

2( 1
2 )

2
−18

( 1
2 )+3

=
1
2

−18
7
2

= ( −35
2

)( 2
7
) = −5

2( 1
2 ) − 6 = −5

✓

With a calculator, you can attempt more difficult values such as x = −26 or x = π

; in every case, the two formulas will give the same answer. When we assert that
two very different functions will always produce the same answers, we are making
a very powerful generalization.

Exception: x = −3 is outside the domain of one of these two functions. In this
important sense, the two functions are not in fact equal. Take a moment to make
sure you understand why this is true!



Such generalizations are very important because they allow us to simplify.

Suppose that you were told “I am going to give you a hundred numbers. For each
number I give you, square it, then double the answer, then subtract eighteen, then
divide by the original number plus three.” This kind of operation comes up all the
time. But you would be quite relieved to discover that you can accomplish the same
task by simply doubling each number and subtracting 6! The generalization in this
case is 2x2−18

x+3 = 2x − 6; you will be creating exactly this sort of generalization in
the chapter on Rational Expressions.



Graphing
This module describes how to graph basic functions.

Graphing, like algebraic generalizations, is a difficult topic because many
students know how to do it but are not sure what it means.

For instance, consider the following graph:

If I asked you “Draw the graph of y = x2” you would probably remember
how to plot points and draw the shape.

But suppose I asked you this instead: “Here’s a function, y = x2. And here’s
a shape, that sort of looks like a U. What do they actually have to do with
each other?” This is a harder question! What does it mean to graph a
function?

The answer is simple, but it has important implications for a proper
understanding of functions. Recall that every point on the plane is
designated by a unique (x,y) pair of coordinates: for instance, one point is
(5,3). We say that its x
-value is 5 and its y
-value is 3.

A few of these points have the particular property that their y
-values are the
square of their x
-values. For instance, the points (0,0), (3,9), and (−5,25)
all have that property. (5,3) and (−2, − 4) do not.

The graph shown—the pseudo-U shape—is all the points in the plane that
have this property. Any point whose y-value is the square of its x-value is
on this shape; any point whose y-value is not the square of its x-value is not
on this shape. Hence, glancing at this shape gives us a complete visual
picture of the function y = x2 if we know how to interpret it correctly.



Graphing Functions

Remember that every function specifies a relationship between two
variables. When we graph a function, we put the independent variable on
the x-axis, and the dependent variable on the y-axis.

For instance, recall the function that describes Alice’s money as a function
of her hours worked. Since Alice makes $12/hour, her financial function is
m(t) = 12t. We can graph it like this.

This simple graph has a great deal to tell us about Alice’s job, if we read it
correctly.

The graph contains the point (3,300).What does that tell us? That after
Alice has worked for three hours, she has made $300.
The graph goes through the origin (the point (0,0)). What does that tell
us? That when she works 0 hours, Alice makes no money.
The graph exists only in the first quadrant. What does that tell us? On
the mathematical level, it indicates the domain of the function (
t ≥ 0)
and the range of the function (
m ≥ 0). In terms of the situation, it tells
us that Alice cannot work negative hours or make negative money.
The graph is a straight line. What does that tell us? That Alice makes
the same amount of money every day: every day, her money goes up by
$100. ($100/day is the slope of the line—more on this in the section on
linear functions.)

Consider now the following, more complicated graph, which represents
Alice’s hair length as a function of time (where time is now measured in
weeks instead of hours).



What does this graph h(t) tell us? We can start with the same sort of simple
analysis.

The graph goes through the point (0,12).This tells us that at time

(t = 0), Alice’s hair is 12" long.
The range of this graph appears to be 12 ≤ h ≤ 18. Alice never allows
her hair to be shorter than 12" or longer than 18".

But what about the shape of the graph? The graph shows a gradual incline
up to 18", and then a precipitous drop back down to 12"; and this pattern
repeats throughout the shown time. The most likely explanation is that
Alice’s hair grows slowly until it reaches 18", at which point she goes to the
hair stylist and has it cut down, within a very short time (an hour or so), to
12". Then the gradual growth begins again.

The rule of consistency, graphically

Consider the following graph.

This is our earlier “U” shaped graph (
y = x2) turned on its side. This might
seem like a small change. But ask this question: what is y when
x = 3? This
question has two answers. This graph contains the points (3, − 9) and (3,9).
So when x = 3, y is both 9 and –9 on this graph.



This violates the only restriction on functions—the rule of consistency.
Remember that the x-axis is the independent variable, the y-axis the
dependent. In this case, one “input” value
(3) is leading to two different
“output” values (−9,9) We can therefore conclude that this graph does not
represent a function at all. No function, no matter how simple or
complicated, could produce this graph.

This idea leads us to the “vertical line test,” the graphical analog of the rule
of consistency.

The Vertical Line Test
If you can draw any vertical line that touches a graph in two places,
then that graph violates the rule of consistency and therefore does not
represent any function.

It is important to understand that the vertical line test is not a new rule! It is
the graphical version of the rule of consistency. If any vertical line touches a
graph in two places, then the graph has two different y-values for the same x
-value, and this is the only thing that functions are not allowed to do.

What happens to the graph, when you add 2 to a function?

Suppose the following is the graph of the function y = f(x).

y = f(x);
Contains

the
following

points
(among
others): 



We can see from the graph that the domain of the graph is −3 ≤ x ≤ 6 and
the range is −3 ≤ y ≤ 2.

Question: What does the graph of y = f(x) + 2 look like?

This might seem an impossible question, since we do not even know what
the function f(x) is. But we don’t need to know that in order to plot a few
points.

x f(x) f(x + 2)

so y = f(x)
contains this
point

and
y = f(x) + 2
contains this
point

–
3 2 4 (−3,2) (−3,4)

–
1 –3 –1 (−1, − 3) (−1, − 1)

1 2 4 (1,2) (1,4)

6 0 2 (6,0) (6,2)

(−3,2),
(−1, − 3)

, (1,2),
(6,0)



If you plot these points on a graph, the pattern should become clear. Each
point on the graph is moving up by two. This comes as no surprise: since
you added 2 to each y-value, and adding 2 to a y-value moves any point up
by 2. So the new graph will look identical to the old, only moved up by 2.

In a similar way, it should be obvious that if you subtract 10 from a
function, the graph moves down by 10. Note that, in either case, the domain
of the function is the same, but the range has changed.

These permutations work for any function. Hence, given the graph of the
function y = √x below (which you could generate by plotting points), you
can produce the other two graphs without plotting points, simply by moving
the first graph up and down.

y = f(x) y = f(x) + 2; All y-values are 2 higher

y = √x y = √x + 4 y = √x − 1 1
2



Other vertical permutations

Adding or subtracting a constant from f(x), as described above, is one
example of a vertical permutation: it moves the graph up and down. There
are other examples of vertical permutations.

For instance, what does doubling a function do to a graph? Let’s return to
our original function:

What does the graph y = 2f(x) look like? We can make a table similar to
the one we made before.

x f(x) 2f(x) so y = 2f(x) contains this point

–3 2 4 (−3,4)

–1 –3 –6 (−1, − 6)

1 2 4 (1,4)

6 0 0 (6,0)

y = f(x)



In general, the high points move higher; the low points move lower. The
entire graph is vertically stretched, with each point moving farther away
from the x-axis.

Similarly, y = 1
2 f(x) yields a graph that is vertically compressed, with each

point moving toward the x-axis.

Finally, what does y = −f(x) look like? All the positive values become
negative, and the negative values become positive. So, point by point, the
entire graph flips over the x-axis.

What happens to the graph, when you add 2 to the x value?

Vertical permutations affect the y-value; that is, the output, or the function
itself. Horizontal permutations affect the x-value; that is, the numbers that

y = f(x) y = 2f(x); All y-values are doubled

y = f(x) y = −f(x); All y-values change sign



come in. They often do the opposite of what it naturally seems they should.

Let’s return to our original function y = f(x).

Suppose you were asked to graph y = f(x + 2). Note that this is not the
same as f(x) + 2! The latter is an instruction to run the function, and then
add 2 to all results. But y = f(x + 2) is an instruction to add 2 to every x-
value before plugging it into the function.

f(x) + 2 changes y, and therefore shifts the graph vertically
f(x + 2) changes x, and therefore shifts the graph horizontally.

But which way? In analogy to the vertical permutations, you might expect
that adding two would shift the graph to the right. But let’s make a table of
values again.

y = f(x);
Contains

the
following

points
(among
others): 
(−3,2),

(−1, − 3)
, (1,2),
(6,0)



x x + 2 f(x + 2) so y = f(x + 2) contains this point

–
5 –3 f(–3)=2 (−5,2)

–
3 –1 f(–1)=–3 (−3, − 3)

–
1 1 f(1)=2 (−1,2)

4 6 f(6)=0 (4,0)

This is a very subtle, very important point—please follow it closely and
carefully! First of all, make sure you understand where all the numbers in
that table came from. Then look what happened to the original graph.

Note:The original graph f(x) contains the point (6,0); therefore, 
f(x + 2) contains the point (4,0). The point has moved two spaces to the
left.

You see what I mean when I say horizontal permutations “often do the
opposite of what it naturally seems they should”? Adding two moves the
graph to the left.

y = f(x) y = f(x+2); Each point is shifted to the left



Why does it work that way? Here is my favorite way of thinking about it.
f(x − 2) is an instruction that says to each point, “look two spaces to your
left, and copy what the original function is doing there.” At x = 5 it does
what f(x) does at x = 3. At x = 10, it copies f(8). And so on. Because it
is always copying f(x) to its left, this graph ends up being a copy of f(x)
moved to the right. If you understand this way of looking at it, all the rest of
the horizontal permutations will make sense.

Of course, as you might expect, subtraction has the opposite effect:
f(x − 6) takes the original graph and moves it 6 units to the right. In either
case, these horizontal permutations affect the domain of the original
function, but not its range.

Other horizontal permutations

Recall that y = 2f(x) vertically stretches a graph; y = 1
2 f(x) vertically

compresses. Just as with addition and subtraction, we will find that the
horizontal equivalents work backward.

x 2x f(2x) so y = 2f(x) contains this point

–1½ –3 2 (−1 1
2 ,2)

–½ –1 –3 (− 1
2 ; − 3)

½ 1 2 ( 1
2 ;2)

3 6 0 (3,0)

The original graph f(x) contains the point (6,0); therefore, f(2x) contains
the point (3,0). Similarly, (−1; − 3) becomes (− 1

2 ; − 3). Each point is



closer to the y-axis; the graph has horizontally compressed.

We can explain this the same way we explained f(x − 2). In this case,
f(2x) is an instruction that says to each point, “Look outward, at the x-value
that is double yours, and copy what the original function is doing there.” At
x = 5 it does what f(x) does at x = 10. At x = −3, it copies f(−6). And
so on. Because it is always copying f(x) outside itself, this graph ends up
being a copy of f(x) moved inward; ie a compression. Similarly, f( 1

2 x)
causes each point to look inward toward the y-axis, so it winds up being a
horizontally stretched version of the original.

Finally, y = f(−x) does precisely what you would expect: it flips the graph
around the y-axis. f(−2) is the old f(2) and vice-versa.

All of these permutations do not need to be memorized: only the general
principles need to be understood. But once they are properly understood,

y = f(x) y = f(2x); Each point is twice as close to the y-axis

y = f(x) y = f(-x); Each point flips around the y-axis



even a complex graph such as
y = −2(x + 3)2 + 5 can be easily graphed.
You take the (known) graph of y = x2, flip it over the x-axis (because of the
negative sign), stretch it vertically (the 2), move it to the left by 3, and move
it up 5.

With a good understanding of permutations, and a very simple list of known
graphs, it becomes possible to graph a wide variety of important functions.
To complete our look at permutations, let’s return to the graph of y = √x in
a variety of flavors.

y = √x;
Generated

by
plotting
points;

Contains 
(0,0),
(1,1),
(4,2);

Domain:
x ≥ 0;
Range:
y ≥ 0;
Range:
y ≥ 0

y = √x + 5
; Shifted 5
units to the

left;
Contains 
(−5,0),
(−4,1),
(−1,2);
Domain:
x ≥ −5;
Range:
y ≥ 0

y = √−x − 2
; Flipped

horizontally,
shifted down
2; Contains 
(0, − 2),

(−1, − 1), 
(−4,0);
Domain:

x ≤ 0; Range:
y ≥ −2

y = −√x − 1 + 5
; Flipped vertically,

shifted 1 to the
right and 5 up;
Contains (1,5),

(2,4), (5,3);
Domain:
x ≥ 1;

Range:
y ≤ 5



Lines
This module discusses lines and their uses, and slope.

Most students entering Algebra II are already familiar with the basic
mechanics of graphing lines. Recapping very briefly: the equation for a line
is y = mx + b where b is the y-intercept (the place where the line crosses
the y-axis) and m is the slope. If a linear equation is given in another form
(for instance, 4x + 2y = 5), the easiest way to graph it is to rewrite it in
y = mx + b form (in this case, y = −2x + 2 1

2 ).

There are two purposes of reintroducing this material in Algebra II. The
first is to frame the discussion as linear functions modeling behavior. The
second is to deepen your understanding of the important concept of slope.

Consider the following examples. Sam is a salesman—he earns a
commission for each sale. Alice is a technical support representative—she
earns $100 each day. The chart below shows their bank accounts over the
week.

After this many
days (t)

Sam’s bank
account (S)

Alice’s bank
account (A)

0 (*what they
started with) $75 $750

1 $275 $850

2 $375 $950

3 $450 $1,050

4 $480 $1,150



After this many
days (t)

Sam’s bank
account (S)

Alice’s bank
account (A)

5 $530 $1,250

Sam has some extremely good days (such as the first day, when he made
$200) and some extremely bad days (such as the second day, when he made
nothing). Alice makes exactly $100 every day.

Let d be the number of days, S be the number of dollars Sam has made, and
A be the number of dollars Alice has made. Both S and A are functions of
time. But s(t) is not a linear function, and A(t)is a linear function.

Linear Function
A function is said to be “linear” if every time the independent
variable increases by 1, the dependent variable increases or
decreases by the same amount.

Once you know that Alice’s bank account function is linear, there are only
two things you need to know before you can predict her bank account on
any given day.

How much money she started with ($750 in this example). This is
called the y-intercept.
How much she makes each day ($100 in this example). This is called
the slope.

y-intercept is relatively easy to understand. Verbally, it is where the function
starts; graphically, it is where the line crosses the y-axis.

But what about slope? One of the best ways to understand the idea of slope
is to convince yourself that all of the following definitions of slope are
actually the same.



Definitions of Slope

In our example In general On a graph

Each day, Alice’s
bank account
increases by 100.
So the slope is 100.

Each time the
independent
variable increases
by 1, the dependent
variable increases
by the slope.

Each time you
move to the right
by 1, the graph
goes up by the
slope.

Between days 2 and
5, Alice earns $300
in 3 days.
300/3=100.Between
days 1 and 3, she
earns $200 in 2
days. 200/2=100.

Take any two
points. The change
in the dependent
variable, divided by
the change in the
independent
variable, is the
slope.

Take any two
points. The change
in y divided by the
change in x is the
slope. This is
often written as
Δy

Δx
, or as rise

run

The higher the
slope, the faster
Alice is making
moey.

The higher the
slope, the faster the
dependent variable
increases.

The higher the
slope, the faster
the graph rises as
you move to the
right.

So slope does not tell you where a graph is, but how quickly it is rising.
Looking at a graph, you can get an approximate feeling for its slope without
any numbers. Examples are given below.

A slope
of 1:

each time
you go
over 1,

A steep
slope

of
perhaps
3 or 4

A
gentle
slope

of
perhaps

1
2 .

A
horizontal
line has a
slope of 0:
each time

you go

This goes
down as you
move left to
right. So the

slope is
negative. It is



you also
go up 1

over 1, you
don’t go up

at all!

steep: maybe
a –2.



Function Concepts -- Composite Functions

You are working in the school cafeteria, making peanut butter sandwiches for today’s lunch.

The more classes the school has, the more children there are.
The more children there are, the more sandwiches you have to make.
The more sandwiches you have to make, the more pounds (lbs) of peanut butter you
will use.
The more peanut butter you use, the more money you need to budget for peanut butter.

...and so on. Each sentence in this little story is a function. Mathematically, if c is the
number of classes and h is the number of children, then the first sentence asserts the
existence of a function h(c).

The principal walks up to you at the beginning of the year and says “We’re considering
expanding the school. If we expand to 70 classes, how much money do we need to budget?
What if we expand to 75? How about 80?” For each of these numbers, you have to calculate
each number from the previous one, until you find the final budget number.

# Classes # Children # Sandwiches lb. $$

But going through this process each time is tedious. What you want is one function that puts
the entire chain together: “You tell me the number of classes, and I will tell you the budget.”

# Classes $$

This is a composite function—a function that represents in one function, the results of an
entire chain of dependent functions. Since such chains are very common in real life,



finding composite functions is a very important skill.

How do you make a composite Function?

We can consider how to build composite functions into the function game that we played on
the first day. Suppose Susan takes any number you give her, quadruples it, and adds 6. Al
takes any number you give him and divides it by 2. Mathematically, we can represent the
two functions like this:
Equation:

S(x) = 4x + 6

Equation:

A(x) =
x

2

To create a chain like the one above, we give a number to Susan; she acts on it, and gives the
resulting number to Al; and he then acts on it and hands back a third number.

3 → Susan → S(3) = 18 → Al → A(18) = 9

In this example, we are plugging S(3)—in other words, 18— into Al’s function. In general,
for any x that comes in, we are plugging S(x) into A(x). So we could represent the entire
process as A(S(x)). This notation for composite functions is really nothing new: it means
that you are plugging S(x) into the A function.

But in this case, recall that S(x) = 4x + 6
. So we can write:
Equation:

A(S(x)) =
S(x)

2
=

4x + 6

2
= 2x + 3

What happened? We’ve just discovered a shortcut for the entire process. When you perform
the operation A(S(x))—that is, when you perform the Al function on the result of the Susan
function—you are, in effect, doubling and adding 3. For instance, we saw earlier that when
we started with a 3, we ended with a 9. Our composite function does this in one step:

3 → 2x + 3 → 9

Understanding the meaning of composite functions requires real thought. It requires
understanding the idea that this variable depends on that variable, which in turn depends on
the other variable; and how that idea is translated into mathematics. Finding composite
functions, on the other hand, is a purely mechanical process—it requires practice, but no



creativity. Whenever you are asked for f(g(x)), just plug the g(x) function into the f(x)
function and then simplify.

Example:
Building and Testing a Composite Function
f(x) = x2 − 4x
g(x) = x + 2
What is f(g(x))?

To find the composite, plug g(x) into f(x), just as you would with any number.

f(g(x)) = (x + 2)2 − 4(x + 2)

Then simplify.

f(g(x)) = (x2 + 4x + 4) − (4x + 8)
f(g(x)) = x2 − 4

Let’s test it. f(g(x)) means do g, then f. What happens if we start with x = 9?

7 → g(x) → 7 + 2 = 9 → f(x) → (9)2 − 4(9) = 45

So, if it worked, our composite function should do all of that in one step.

7 → x2 − 4 = (7)2 − 4 = 45 ✓ It worked!

There is a different notation that is sometimes used for composite functions. This book will
consistently use f(g(x)) which very naturally conveys the idea of “plugging g(x) into f(x)
.” However, you will sometimes see the same thing written as f°g(x), which more naturally
conveys the idea of “doing one function, and then the other, in sequence.” The two notations
mean the same thing.



Inverse Functions
This module describes what inverse functions are and how they can be
used.

Let's go back to Alice, who makes $100/day. We know how to answer
questions such as "After 3 days, how much money has she made?" We use
the function m(t) = 100t.

But suppose I want to ask the reverse question: “If Alice has made $300,
how many hours has she worked?” This is the job of an inverse function. It
gives the same relationship, but reverses the dependent and independent
variables. t(m) = m/100. Given any amount of money, divide it by 100 to
find how many days she has worked.

If a function answers the question: “Alice worked this long, how
much money has she made?”
then its inverse answers the question:
“Alice made this much money, how long did she work?"
If a function answers the question: “I have this many spoons, how
much do they weigh?”
then its inverse answers the question: “My
spoons weigh this much, how many do I have?”
If a function answers the question: “How many hours of music fit on
12 CDs?”
then its inverse answers the question: “How many CDs do
you need for 3 hours of music?”

How do you recognize an inverse function?

Let’s look at the two functions above:
Equation:

m(t) = 100t

Equation:

t(m) = m/100

Mathematically, you can recognize these as inverse functions because they
reverse the inputs and the outputs.



3 → m(t) = 100t → 300

300 → t(m) = m/100 → 3

✓ Inverse functions

Of course, this makes logical sense. The first line above says that “If Alice
works 3 hours, she makes $300.” The second line says “If Alice made $300,
she worked 3 hours.” It’s the same statement, made in two different ways.

But this “reversal” property gives us a way to test any two functions to see
if they are inverses. For instance, consider the two functions:
Equation:

f(x) = 3x + 7

Equation:

g(x) =
1

3
x − 7

They look like inverses, don’t they? But let’s test and find out.

2 → 3x + 7 → 13

13 → 3
x − 7 → 13

3 − 7 → − 8
3

✗ Not inverse functions



The first function turns a 2 into a 13. But the second function does not turn
13 into 2. So these are not inverses.

On the other hand, consider:
Equation:

f(x) = 3x + 7

Equation:

g(x) =
1

3
(x − 7)

Let’s run our test of inverses on these two functions.

2 → 3x + 7 → 13

13 → 1
3 (x − 7) → 2

✓ Inverse functions

So we can see that these functions do, in fact, reverse each other: they are
inverses.

A common example is the Celsius-to-Fahrenheit conversion:
Equation:

F(C) = (
9

5
)C + 32

Equation:

( )



C(F) = (
5

9
)(F − 32)

where C is the Celsius temperature and F  the Fahrenheit. If you plug
100°C into the first equation, you find that it is 212°F . If you ask the
second equation about 212°F , it of course converts that back into 100°C.

The notation and definition of an inverse function

The notation for the inverse function of f(x) is f −1(x). This notation can
cause considerable confusion, because it looks like an exponent, but it isn’t.
f −1(x) simply means “the inverse function of f(x).” It is defined formally
by the fact that if you plug any number x into one function, and then plug
the result into the other function, you get back where you started. (Take a
moment to convince yourself that this is the same definition I gave above
more informally.) We can represent this as a composition function by saying
that
f(f −1(x)) = x.

Inverse Function
f −1(x) is defined as the inverse function of f(x) if it consistently
reverses the f(x) process. That is, if f(x) turns a into b, then f −1(x)
must turn b into a. More concisely and formally, f −1(x) is the inverse
function of f(x) if f(f −1(x)) = x.

Finding an inverse function

In examples above, we saw that if
f(x) = 3x + 7, then
f −1(x) = 1

3 (x − 7). We also saw that the function 1
3 x − 7, which may

have looked just as likely, did not work as an inverse function. So in
general, given a function, how do you find its inverse function?

Remember that an inverse function reverses the inputs and outputs. When
we graph functions, we always represent the incoming number as x and the
outgoing number as y. So to find the inverse function, switch the x and y
values, and then solve for y.



Example:
Building and Testing an Inverse Function

1. Find the inverse function of f(x) = 2x−3
5

a.Write the function as y = 2x−3
5

b.Switch the x and y variables. x = 2y−3
5

c.Solve for y. 5x = 2y − 3. 5x + 3 = 2y. 5x+3
2 = y. So

f −1(x) = 5x+3
2 .

2. Test to make sure this solution fills the definition of an inverse
function.

a.Pick a number, and plug it into the original function.
9 → f(x) → 3.
b.See if the inverse function reverses this process.
3 → f −1(x) → 9. ✓ It worked!

Were you surprised by the answer? At first glance, it seems that the
numbers in the original function (the 2, 3, and 5) have been rearranged
almost at random.

But with more thought, the solution becomes very intuitive. The original
function f(x) described the following process: double a number, then
subtract 3, then divide by 5. To reverse this process, we need to reverse
each step in order: multiply by 5, then add 3, then divide by 2. This is just
what the inverse function does.

Some functions have no inverse function

Some functions have no inverse function. The reason is the rule of
consistency.



For instance, consider the function y = x2. This function takes both 3 and –
3 and turns them into 9. No problem: a function is allowed to turn different
inputs into the same output. However, what does that say about the inverse
of this particular function? In order to fulfill the requirement of an inverse
function, it would have to take 9, and turn it into both 3 and –3—which is
the one and only thing that functions are not allowed to do. Hence, the
inverse of this function would not be a function at all!

If 3 goes in, 9 comes out. If –3 goes in, 9 also comes out. No problem:

But its inverse would have to turn 9 into both 3 and –3. No function can do

3 →

−3 →

9 →

9 →

9 →

9 →

3 →

−3 →



this, so there is no inverse.

In general, any function that turns multiple inputs into the same output,
does not have an inverse function.

What does that mean in the real world? If we can convert Fahrenheit to
Celsius, we must be able to convert Celsius to Fahrenheit. If we can ask
“How much money did Alice make in 3 days?” we must surely be able to
ask “How long did it take Alice to make $500?” When would you have a
function that cannot be inverted?

Let’s go back to this example:

Recall the example that was used earlier: “Max threw a ball. The height of
the ball depends on how many seconds it has been in the air.” The two
variables here are h (the height of the ball) and t (the number of seconds it
has been in the air). The function h(t) enables us to answer questions such
as “After 3 seconds, where is the ball?”

The inverse question would be “At what time was the ball 10 feet in the
air?” The problem with that question is, it may well have two answers!

The ball is here... ...after this much time has elapsed

10 ft 2 seconds (*on the way up)

10 ft 5 seconds (*on the way back down)

So what does that mean? Does it mean we can’t ask that question? Of
course not. We can ask that question, and we can expect to mathematically
find the answer, or answers—and we will do so in the quadratic chapter.
However, it does mean that time is not a function of height because such a



“function” would not be consistent: one question would produce multiple
answers.



Inequalities
This module introduces the concept of inequalities.

The symbols for inequalities are familiar:

x < 7 “x is less than 7”
x > 7 “x is greater than 7”
x ≤ 7 “x is less than or equal to 7”
x ≥ 7 “x is greater than or equal to 7”

If you have trouble remembering which is which, it may be helpful to
remember that the larger side of the
<
symbol always goes with the larger
number. Hence, when you write x < 7 you can see that the 7 is the larger of
the two numbers. Some people think of the
<
symbol as an alligator’s
mouth, which always opens toward the largest available meal!

Visually, we can represent these inequalities on a number line. An open
circle
○
is used to indicate a boundary that is not a part of the set; a closed
circle
●
is used for a boundary that is a part of the set.

AND and OR

More complicated intervals can be represented by combining these symbols
with the logical operators AND and OR.

For instance, “
x ≥ 3 AND x < 6” indicates that
x
must be both greater-
than-or-equal-to 3, and less-than 6. A number only belongs in this set if it
meets both conditions. Let’s try a few numbers and see if they fit.

Includes all numbers less than
7, but not 7;
x < 7
;
(−∞, 7)

Includes all numbers less than 7,
and 7 itself;
x ≤ 7
;
(−∞, 7]



Sample
number x ≥ 3 x < 6

x ≥ 3 AND x < 6 (both
true)

x = 8 Yes No No

x = 0 No Yes No

x = 4 Yes Yes Yes

We can see that a number must be between 3 and 6 in order to meet this
AND condition.

This type of set is sometimes represented concisely as 3 ≤ x < 6, which
visually communicates the idea that x is between 3 and 6. This notation
always indicates an AND relationship.

“
x < 3 OR x ≥ 6” is the exact opposite. It indicates that x must be either
less-than 3, or greater-than-or-equal-to 6. Meeting both conditions is OK,
but it is not necessary.

x ≥ 3ANDx < 6
All numbers that
are greater-than-

or-equal-to 3, and
are also less than

6;
3 ≤ x < 6



Sample
number x < 3 x ≥ 6

x < 3 OR x ≥ 6 (either
one or both true)

x = 8 No Yes Yes

x = 0 Yes No Yes

x = 4 No No No

Visually, we can represent this set as follows:

Both of the above examples are meaningful ways to represent useful sets. It
is possible to put together many combinations that are perfectly logical, but
are not meaningful or useful. See if you can figure out simpler ways to
write each of the following conditions.

1. x ≥ 3 AND x > 6
2. x ≥ 3 OR x > 6
3. x < 3 AND x > 6
4. x > 3 OR x < 6

If you are not sure what these mean, try making tables of numbers like the
ones I made above. Try a number below 3, a number between 3 and 6, and a

All numbers
that are either
less than 3, or

greater-than-or-
equal-to 6;


x < 3ORx ≥ 6



number above 6. See when each condition is true. You should be able to
convince yourself of the following:

1. The first condition above is filled by any number greater than 6; it is
just a big complicated way of writing x > 6.

2. Similarly, the second condition is the same as x ≥ 3.
3. The third condition is never true.
4. The fourth condition is always true.

I have to pause here for a brief philosophical digression. The biggest
difference between a good math student, and a poor or average math
student, is that the good math student works to understand things; the poor
student tries to memorize rules that will lead to the right answer, without
actually understanding them.

The reason this unit (Inequalities and Absolute Values) is right here at the
beginning of the book is because it distinguishes sharply between these two
kinds of students. Students who try to understand things will follow the
previous discussion of AND and OR and will think about it until it makes
sense. When approaching a new problem, they will try to make logical
sense of the problem and its solution set.

But many students will attempt to learn a set of mechanical rules for solving
inequalities. These students will often end up producing nonsensical
answers such as the four listed above. Instead of thinking about what their
answers mean, they will move forward, comfortable because “it looks sort
of like the problem the teacher did on the board.”

If you have been accustomed to looking for mechanical rules to follow, now
is the time to begin changing your whole approach to math. It’s not too
late!!! Re-read the previous section carefully, line by line, and make sure
each sentence makes sense. Then, as you work problems, think them
through in the same way: not “whenever I see this kind of problem the
answer is an and” but instead “What does AND mean? What does OR
mean? Which one correctly describes this problem?”

All that being said, there are still a few hard-and-fast rules that I will point
out as I go. These rules are useful—but they do not relieve you of the



burden of thinking.

One special kind of OR is the symbol ±. Just as ≥
means “greater than OR
equal to,” ± means “plus OR minus.” Hence, if x2 = 9, we might say that
x = ±3; that is, x can be either 3, or –3.

Another classic sign of “blind rule-following” is using this symbol with
inequalities. What does it mean to say x < ±3? If it means anything at all,
it must mean “
x < 3 OR x < −3”; which, as we have already seen, is just
a sloppy shorthand for x < 3. If you find yourself using an inequality with
a ± sign, go back to think again about the problem.

Note:
Inequalities and the ± symbol don’t mix.

Solving Inequalities

Inequalities are solved just like equations, with one key exception.

Note:
Whenever you multiply or divide by a negative number, the sign
changes.

You can see how this rule affects the solution of a typical inequality
problem:

3x + 4 > 5x + 10 An “inequality” problem



−2x + 4 > 10 subtract
5x
from both sides

−2x > 6 subtract 4 from both sides

x < −3 divide both sides by –2, and change sign!

As always, being able to solve the problem is important, but even more
important is knowing what the solution means. In this case, we have
concluded that any number less than –3 will satisfy the original equation,
3x + 4 > 5x + 10. Let’s test that.

x = −4: 3(−4) + 4 > 5(−4) + 10 −8 > −10 Yes.

x = −2: 3(−2) + 4 > 5(−2) + 10 −2 > 0 No.

As expected, x = −4 (which is less than –3) works; x = −2 (which is not)
does not work.

Why do you reverse the inequality when multiplying or dividing by a
negative number? Because negative numbers are backward! 5 is greater
than 3, but –5 is less than –3. Multiplying or dividing by negative numbers
moves you to the other side of the number line, where everything is
backward.



Multiplying by -1
moves you "over

the rainbow" to the
land where

everything is
backward!



Absolute Value Equations
This module introduces absolute value equations.

Absolute value is one of the simplest functions—and paradoxically, one of
the most problematic.

On the face of it, nothing could be simpler: it just means “whatever comes
in, a positive number comes out.”
Equation:

Equation:

∣ −5 ∣= 5

Absolute values seem to give us permission to ignore the whole nasty world
of negative numbers and return to the second grade when all numbers were
positive.

But consider these three equations. They look very similar—only the
number changes—but the solutions are completely different.

∣ x ∣= 10 ∣ x ∣= −10 ∣ x ∣= 0

x = 10
works. x = 10 doesn’t work. x = 0 is the

only solution.

Hey, so does
x = −10! Neither does x = −10.

∣ 5 ∣= 5



Three Simple Absolute Value Equations

Concisely,
x = ±10.

Hey...absolute values are
never negative!

We see that the first problem has two solutions, the second problem has no
solutions, and the third problem has one solution. This gives you an
example of how things can get confusing with absolute values—and how
you can solve things if you think more easily than with memorized rules.

For more complicated problems, follow a three-step approach.

1. Do the algebra to isolate the absolute value.
2. Then, think it through like the simpler problems above.
3. Finally, do more algebra to isolate x.

In my experience, most problems with this type of equation do not occur in
the first and third step. And they do not occur because students try to think
it through (second step) and don’t think it through correctly. They occur
because students try to take “shortcuts” to avoid the second step entirely.

Example:
Absolute Value Equation (No Variable on the Other Side)
3 |2x + 1| − 7 = 5

Step 1:
Algebraically isolate the absolute value

3 |2x + 1| = 12
|2x + 1| = 4

Step 2:
Think!

For the moment, forget about the quantity 2x + 1; just think of it
as something. The absolute value of “something” is 4. So, in
analogy to what we did before, the “something” can either be 4,
or –4. So that gives us two possibilities...



2x + 1 = 4
2x + 1 = −4

Step 3:
Algebraically solve (both equations) for x

2x = 3 or 2x = −5
x = 3

2  or x = − 5
2

So this problem has two answers: x = 3
2  and x = − 5

2

Example:
Absolute Value Equation (No Variable on the Other Side)
6∣x−2∣

5 + 7 = 4

Step 1: Algebraically isolate the absolute value
Equation:

6|x − 2|

5
= −3

Equation:

6|x − 2| = −15

Equation:

x − 2 =
−15

6
=

−5

2

Step 2: Think!The absolute value of “something” is
−2 1
2 
. But wait

—absolute values are never negative! It can’t happen! So we don’t
even need a third step in this case: the equation is impossible.
No solution. ∣ ∣



The “think” step in the above examples was relatively straightforward,
because there were no variables on the right side of the equation. When
there are variables on the right side, you temporarily “pretend” that the right
side of the equation is a positive number, and break the equation up
accordingly. However, there is a price to be paid for this slight of hand: you
have to check your answers, because they may not work even if you do
your math correctly.

Example:
Absolute Value Equation with Variables on Both Sides
∣ 2x + 3 ∣= −11x + 42
We begin by approaching this in analogy to the first problem above,
∣ x ∣= 10. We saw that x
could be either 10, or –10. So we will assume
in this case that
2x + 3
can be either
−11x + 42
, or the negative of
that, and solve both equations.
Problem One

Equation:

2x + 3 = −11x + 42

Equation:

13x + 3 = 42

Equation:

13x = 39

Equation:

x = 3

Problem Two

Equation:



2x + 3 = −(−11x + 42)

Equation:

2x + 3 = 11x − 42

Equation:

−9x + 3 = −42

Equation:

−9x = −45

Equation:

x = 5

So we have two solutions: x = 3 and x = 5. Do they both work? Let’s
try them both.
Problem One

1. ∣ 2(3) + 3 ∣= −11(3) + 42.

∣ 9 ∣= 9. ✓

Problem Two

1. ∣ 2(5) + 3 ∣= −11(5) + 42.

∣ 13 ∣= −13.
✗

We see in this case that the first solution, x = 3, worked; the second, x = 5
, did not. So the only solution to this problem is x = 3.



However, there was no way of knowing that in advance. For such problems,
the only approach is to solve them twice, and then test both answers. In
some cases, both will work; in some cases, neither will work. In some
cases, as in this one, one will work and the other will not.

Note: Whenever an absolute value equation has variables on both sides,
you have to check your answer(s). Even if you do all the math perfectly,
your answer(s) may not work.

OK, why is that? Why can you do all the math right and still get a wrong
answer?

Remember that the problem ∣ x ∣= 10 has two solutions, and ∣ x ∣= −10
has none. We started with the problem ∣ 2x + 3 ∣= −11x + 42. OK, which
is that like? Is the right side of the equation like 10 or –10? If you think
about it, you can convince yourself that it depends on what
x
is. After you
solve, you may wind up with an x-value that makes the right side positive;
that will work. Or, you may wind up with an x-value that makes the right
side negative; that won’t work. But you can’t know until you get there.



Absolute Value Inequalities
This module introduces absolute value inequalities.

Here’s one of my favorite problems:

∣ x ∣< 10

Having seen that the solution to ∣ x ∣= 10 is ∣ x ∣= ±10, many students
answer this question ∣ x ∣< ±10. However, this is not only wrong: it is, as
discussed above, relatively meaningless. In order to approach this question
you have to—you guessed it!—step back and think.

Here are two different, perfectly correct ways to look at this problem.

1. What numbers work? 4 works. –4 does too. 0 works. 13 doesn’t work.
How about –13? No: if x = −13 then ∣ x ∣= 13, which is not less than
10. By playing with numbers in this way, you should be able to
convince yourself that the numbers that work must be somewhere
between –10 and 10. This is one way to approach the answer.

2. The other way is to think of absolute value as representing distance
from 0. ∣ 5 ∣ and ∣ −5 ∣ are both 5 because both numbers are 5 away
from 0. In this case, ∣ x ∣< 10 means “the distance between x and 0 is
less than 10”—in other words, you are within 10 units of zero in either
direction. Once again, we conclude that the answer must be between –
10 and 10.

All numbers
whose

absolute value
is less than 10;

−10 < x < 10



It is not necessary to use both of these methods; use whichever method is
easier for you to understand.

More complicated absolute value problems should be approached in the
same three steps as the equations discussed above: algebraically isolate the
absolute value, then think, then algebraically solve for
x
. However, as
illustrated above, the think step is a bit more complicated with inequalities
than with equations.

Example:
Absolute Value Inequality
−3(∣ 2x + 3 ∣ −8) < −15

Step 1:
Algebraically isolate the absolute value

∣ 2x + 3 ∣ −8 > 5 (don’t forget to switch the inequality when
dividing by –3!)
∣ 2x + 3 ∣> 13

Step 2:
Think!

As always, forget the 2x + 3 in this step. The absolute value of
something is greater than 13. What could the something be?
We can approach this in two ways, just as the previous absolute
value inequality. The first method is trying numbers. We discover
that all numbers greater than 13 work (such as 14, 15, 16)—their
absolute values are greater than 13. Numbers less than –13 (such
as –14,–15,–16) also have absolute values greater than 13. But
in-between numbers, such as –12, 0, or 12, do not work.
The other approach is to think of absolute value as representing
distance to 0. The distance between something and 0 is greater
than 13. So the something is more than 13 away from 0—in
either direction.
Either way, we conclude that the something must be anything
greater than 13, OR less than –13!



Step 3:
Algebraically solve (both inequalities) for x
Equation:

The absolute value
of something is
greater than 13;

something < −13
OR


something > −13

2x + 3 < −13 OR 2x + 3 > 13

2x < −16 OR 2x > 10

x < −8 OR x > 5

Any x-value
which is less
than –8 or

greater than
5 will make
the original
inequality

true;

x < −8
OR


x > 5



Many students will still resist the think step, attempting to figure out “the
rules” that will always lead from the question to the answer. At first, it
seems that memorizing a few rules won’t be too hard: “greater-than
problems always lead to OR answers” and that kind of thing. But those
rules will fail you when you hit a problem like the next one.

Example:
Absolute Value Inequality
∣ x − 3 ∣ +10 > 7

Step 1:
Algebraically isolate the absolute value

∣ x − 3 ∣> −3

Step 2:
Think!

The absolute value of something is greater than –3. What could
the something be? 2 works. –2 also works. And 0. And 7. And –
10. And...hey! Absolute values are always positive, so the
absolute value of anything is greater than –3!

All numbers work



Graphing Absolute Values
This module describes how to graph absolute values.

You can graph y =∣ x ∣ easily enough by plotting points. The characteristic
V shape is illustrated below, with a couple of sample points highlighted.

Of course, this shape is subject to the same permutations as any other
function! A few examples are given below.

y = |x|

|x − 5| + 1
Moves right 5, up

1

−|x| + 1
Flips over x
-axis, moves up 1

2 |x + 5|
5 left,
vertically stretched



Inequalities and Absolute Value Concepts -- Graphing Inequalities

In general, the graph of an inequality is a shaded area.

Consider the graph y =∣ x ∣ shown above. Every point on that V-shape has
the property that its y-value is the absolute value of its x-value. For
instance, the point
(−3,3)
is on the graph because 3 is the absolute value of
–3.

The inequality y < |x| means the y-value is less than the absolute value
of the x-value. This will occur anywhere underneath the above graph. For
instance, the point
(−3,1)
meets this criterion; the point
(−3,4)
does not. If
you think about it, you should be able to convince yourself that all points
below the above graph fit this criterion.

The dotted line indicates that the graph y =∣ x ∣ is not actually a part of our
set. If we were graphing y ≤∣ x ∣ the line would be complete, indicating
that those points would be part of the set.

y < |x|



"Piecewise Functions" and Absolute Value
This module introduces piecewise functions for the purpose of
understanding absolute value equations.

What do you get if you put a positive number into an absolute value?
Answer: you get that same number back. ∣ 5 ∣= 5. ∣ π ∣= π. And so on. We
can say, as a generalization, that ∣ x ∣= x; but only if x is positive.

OK, so, what happens if you put a negative number into an absolute value?
Answer: you get that same number back, but made positive. OK, how do
you make a negative number positive? Mathematically, you multiply it by
–1. ∣ −5 ∣= −(−5) = 5. ∣ −π ∣= −(−π) = π. We can say, as a
generalization, that ∣ x ∣= −x; but only if x is negative.

So the absolute value function can be defined like this.
Equation:

The “Piecewise” Definition of Absolute Value

∣ x ∣= {

If you’ve never seen this before, it looks extremely odd. If you try to pin
that feeling down, I think you’ll find this looks odd for some combination
of these three reasons.

1. The whole idea of a “piecewise function”—that is, a function which is
defined differently on different domains—may be unfamiliar. Think
about it in terms of the function game. Imagine getting a card that says
“If you are given a positive number or 0, respond with the same
number you were given. If you are given a negative number, multiply
it by –1 and give that back.” This is one of those “can a function do
that?” moments. Yes, it can—and, in fact, functions defined in this
“piecewise manner” are more common than you might think.

2. The −x looks suspicious. “I thought an absolute value could never be
negative!” Well, that’s right. But if x is negative, then −x is positive.
Instead of thinking of the −x as “negative x” it may help to think of it
as “change the sign of x.”

x, x ≥ 0

−x, x < 0



3. Even if you get past those objections, you may feel that we have taken
a perfectly ordinary, easy to understand function, and redefined it in a
terribly complicated way. Why bother?

Surprisingly, the piecewise definition makes many problems easier. Let’s
consider a few graphing problems.

You already know how to graph y =∣ x ∣. But you can explain the V shape
very easily with the piecewise definition. On the right side of the graph
(where x ≥ 0), it is the graph of y = x. On the left side of the graph (where
x < 0), it is the graph of y = −x.

Still, that’s just a new way of graphing something that we already knew
how to graph, right? But now consider this problem: graph y = x+ ∣ x ∣.
How do we approach that? With the piecewise definition, it becomes a
snap.
Equation:

x + |x| = {

So we graph y = 2x on the right, and y = 0 on the left. (You may want to
try doing this in three separate drawings, as I did above.)

y = −x
The whole
graph is shown, but

the only part we care
about is on the left,

where x < 0

y = x
The whole
graph is shown, but

the only part we care
about is on the right,

where x ≥ 0

y = |x|
Created
by putting

together the
relevant parts of

the other two
graphs.

x + x = 2x x ≥ 0

x + (−x) = 0 x < 0



Our final example requires us to use the piecewise definition of the absolute
value for both x and y.

Example:
Graph |x|+|y|=4
We saw that in order to graph ∣ x ∣ we had to view the left and right sides
separately. Similarly, ∣ y ∣ divides the graph vertically.

On top, where y ≥ 0, ∣ y ∣= y.
Where y < 0, on the bottom, ∣ y ∣= −y.

Since this equation has both variables under absolute values, we have to
divide the graph both horizontally and vertically, which means we look at
each quadrant separately.
∣ x ∣ + ∣ y ∣= 4

Second Quadrant First Quadrant

x ≤ 0, so ∣ x ∣= −x x ≥ 0, so ∣ x ∣= x

y ≥ 0, so ∣ y ∣= y y ≥ 0, so ∣ y ∣= y

y = x + |x|



(−x) + y = 4 x + y = 4

y = x + 4 y = −x + 4

Third Quadrant Fourth Quadrant

x ≤ 0, so ∣ x ∣= −x x ≥ 0, so ∣ x ∣= x

y ≤ 0, so ∣ y ∣= −y y ≤ 0, so ∣ y ∣= −y

(−x) + (−y) = 4 x + (−y) = 4

y = −x − 4 y = x − 4

Now we graph each line, but only in its respective quadrant. For instance,
in the fourth quadrant, we are graphing the line y = x − 4. So we draw the
line, but use only the part of it that is in the fourth quadrant.

Repeating this process in all four quadrants, we arrive at the proper graph.

∣ x ∣ + ∣ y ∣= 4



Simultaneous Equations Concepts -- Distance, Rate and Time

If you travel 30 miles per hour for 4 hours, how far do you go? A little
common sense will tell you that the answer is 120 miles.

This relationship is captured in the following equation:

d = rt where...

d is distance traveled (sometimes the letter x is used instead, for
position)
r is the rate, or speed (sometimes the letter v is used, for velocity)
t is the time

This is presented here because it forms the basis for many common
simultaneous equations problems.



Simultaneous Equations Concepts -- Simultaneous Equations by Graphing

Consider the equation y = 2√x. How many (x,y) pairs are there that
satisfy this equation? Answer: (0,0), (1,2), (4,4), and (9,6) are all
solutions; and there is an infinite number of other solutions. (And don’t
forget non-integer solutions, such as (,1)!)

Now, consider the equation y = x + 1
2 . How many pairs satisfy this

equation? Once again, an infinite number. Most equations that relate two
variables have an infinite number of solutions.

To consider these two equations “simultaneously” is to ask the question:
what (x,y) pairs make both equations true? To express the same question
in terms of functions: what values can you hand the functions 2√x and
x + 1

2  that will make these two functions produce the same answer?

At first glance, it is not obvious how to approach such a question-- it is not
even obvious how many answers there will be.

What number goes into both
functions and makes them
give the same answer? Is

there even such a number? Is
there more than one such

number?



One way to answer such a question is by graphing. Remember, the graph of
y = 2√x is the set of all points that satisfy that relationship; and the graph
of y = x + 1

2  is the set of all points that satisfy that relationship. So the
intersection(s) of these two graphs is the set of all points that satisfy
both relationships.

How can we graph these two? The second one is easy: it is a line, already in
y = mx + b format. The y-intercept is
 1

2

and the slope is 1. We can graph

the first equation by plotting points; or, if you happen to know what the
graph of y = √x looks like, you can stretch the graph vertically to get
y = 2√x, since all the y-values will double. Either way, you wind up with
something like this:

We can see that there are two points of intersection. One occurs when x is
barely greater than 0 (say, x = 0.1), and the other occurs at approximately
x = 3. There will be no more points of intersection after this, because the
line will rise faster than the curve.
Exercise:

Problem:
y = 2√x

y = x + 1
2

Solution:

From graphing...



x = 0.1, x = 3

Graphing has three distinct advantages as a method for solving
simultaneous equations.

1. It works on any type of equations.
2. It tells you how many solutions there are, as well as what the solutions

are.
3. It can help give you an intuitive feel for why the solutions came out

the way they did.

However, graphing also has two disadvantages.

1. It is time-consuming.
2. It often yields solutions that are approximate, not exact—because you

find the solutions by simply “eyeballing” the graph to see where the
two curves meet.

For instance, if you plug the number 3 into both of these functions, will you
get the same answer?

3 → 2√x → 2√3 ≈ 3.46

3 → x + 1
2 → 3.5

Pretty close! Similarly, 2√.1 ≈ 0.632, which is quite close to 0.6. But if
we want more exact answers, we will need to draw a much more exact
graph, which becomes very time-consuming. (Rounded to three decimal
places, the actual answers are 0.086 and 2.914.)

For more exact answers, we use analytic methods. Two such methods will
be discussed in this chapter: substitution and elimination. A third method
will be discussed in the section on Matrices.



Simultaneous Equations Concepts -- Substitution

Here is the algorithm for substitution.

1. Solve one of the equations for one variable.
2. Plug this variable into the other equation.
3. Solve the second equation, which now has only one variable.
4. Finally, use the equation you found in step (1) to find the other

variable.

Example:
Solving Simultaneous Equations by Substitution
3x + 4y = 1
2x − y = 8

1. The easiest variable to solve for here is the y in the second equation.

−y = −2x + 8
y = 2x − 8

2. Now, we plug that into the other equation:

3x + 4(2x − 8) = 1

3. We now have an equation with only x in it, so we can solve for x.

3x + 8x − 32 = 1
11x = 33
x = 3

4. Finally, we take the equation from step (1), y = 2x − 8, and use it to
find y.

y = 2(3) − 8 = −2

So (3, − 2) is the solution. You can confirm this by plugging this pair into
both of the original equations.



Why does substitution work?

We found in the first step that y = 2x − 8. This means that y and 2x − 8
are equal in the sense that we discussed in the first chapter on functions—
they will always be the same number, in these equations—they are the
same. This gives us permission to simply replace one with the other, which
is what we do in the second (“substitution”) step.



Simultaneous Equations Concepts -- Elimination

Here is the algorithm for elimination.

1. Multiply one equation (or in some cases both) by some number, so that
the two equations have the same coefficient for one of the variables.

2. Add or subtract the two equations to make that variable go away.
3. Solve the resulting equation, which now has only one variable.
4. Finally, plug back in to find the other variable.

Example:
Solving Simultaneous Equations by Elimination
3x + 4y = 1

2x − y = 8

1The first question is: how do we get one of these variables to have
the same coefficient in both equations? To get the x coefficients to
be the same, we would have to multiply the top equation by 2 and the
bottom by 3. It is much easier with y; if we simply multiply the
bottom equation by 4, then the two y values will both be multiplied by
4.

3x + 4y = 1

8x − 4y = 32

2Now we either add or subtract the two equations. In this case, we
have 4y on top, and −4y on the bottom; so if we add them, they will
cancel out. (If the bottom had a +4y we would have to subtract the
two equations to get the "
y"s to cancel.)

11x + 0y = 33

3-4 Once again, we are left with only one variable. We can solve this
equation to find that x = 3 and then plug back in to either of the
original equations to find y = −2 as before.



Why does elimination work?

As you know, you are always allowed to do the same thing to both sides of
an equation. If an equation is true, it will still be true if you add 4 to both
sides, multiply both sides by 6, or take the square root of both sides.

Now—consider, in the second step above, what we did to the equation
3x + 4y = 1. We added something to both sides of this equation. What did
we add? On the left, we added 8x − 4y; on the right, we added 32. It seems
that we have done something different to the two sides.

However, the second equation gives us a guarantee that these two
quantities, 8x − 4y and 32, are in fact the same as each other. So by
adding 8x − 4y to the left, and 32 to the right, we really have done exactly
the same thing to both sides of the equation 3x + 4y = 1.



Special Cases
This module discusses concepts related to simultaneous equations.

Consider the two equations:
Equation:

2x + 3y = 8

Equation:

4x + 6y = 3

Suppose we attempt to solve these two equations by elimination. So, we
double the first equation and subtract, and the result is:
Equation:

Hey, what happened? 0 does not equal 13, no matter what x is.
Mathematically, we see that these two equations have no simultaneous
solution. You asked the question “When will both of these equations be
true?” And the math answered, “Hey, buddy, not until 0 equals 13.”

No solution.

Now, consider these equations:
Equation:

Once again, we attempt elimination, but the result is different:
Equation:

4x + 6y = 16

4x + 6y = 3

0 = 13

2x + 3y = 8

4x + 6y = 16



What happened that time? 0 = 0 no matter what x is. Instead of an
equation that is always false, we have an equation that is always true. Does
that mean these equations work for any x and y? Clearly not: for instance,
(1,1) does not make either equation true. What this means is that the two
equations are the same: any pair that solves one will also solve the other.
There is an infinite number of solutions.

Infinite number of solutions.

All of this is much easier to understand graphically! Remember that one
way to solve simultaneous equations is by graphing them and looking for
the intersection. In the first case, we see that original equations represented
two parallel lines. There is no point of intersection, so there is no
simultaneous equation.

In the second case, we see that the original equations represented the same
line, in two different forms. Any point on the line is a solution to both
equations.

Note:If you solve an equation and get a mathematical impossibility such as
0 = 13
, there is no solution. If you get a mathematical tautology such as

0 = 0
, there is an infinite number of solutions.

2x + 3y = 8

4x + 6y = 16

0 = 0



Simultaneous Equations Concepts -- Word Problems

Many students approach math with the attitude that “I can do the equations,
but I’m just not a ‘word problems’ person.” No offense, but that’s like
saying “I’m pretty good at handling a tennis racket, as long as there’s no
ball involved.” The only point of handling the tennis racket is to hit the ball.
The only point of math equations is to solve problems. So if you find
yourself in that category, try this sentence instead: “I’ve never been good at
word problems. There must be something about them I don’t understand, so
I’ll try to learn it.”

Actually, many of the key problems with word problems were discussed in
the very beginning of the “Functions” unit, in the discussion of variable
descriptions. So this might be a good time to quickly re-read that section. If
you can correctly identify the variables, you’re half-way through the hard
part of a word problem. The other half is translating the sentences of the
problem into equations that use those variables.

Let’s work through an example, very carefully.

Example:
Simultaneous Equation Word Problem
A roll of dimes and a roll of quarters lie on the table in front of you. There
are three more quarters than dimes. But the quarters are worth three times
the amount that the dimes are worth. How many of each do you have?

1. Identify and label the variables.

There are actually two different, valid ways to approach this
problem. You could make a variable that represents the number
of dimes; or you could have a variable that represents the value
of the dimes. Either way will lead you to the right answer.
However, it is vital to know which one you’re doing! If you get
confused half-way through the problem, you will end up with the
wrong answer.



Let’s try it this way:

d is the number of dimes

q is the number of quarters

2. Translate the sentences in the problem into equations.

“There are three more quarters than dimes” → q = d + 3
“The quarters are worth three times the amount that the dimes
are worth”
→ 25q = 3(10d)
This second equation relies on the fact that if you have q
quarters, they are worth a total of 25q
cents.

3. Solve.

We can do this by elimination or substitution. Since the first
equation is already solved for q
, I will substitute that into the
second equation and then solve.

25(d + 3) = 3(10d)

25d + 75 = 30d

75 = 5d

d = 15

q = 18



So, did it work? The surest check is to go all the way back to the original
problem—not the equations, but the words. We have concluded that there
are 15 dimes and 18 quarters.
“There are three more quarters than dimes.” ✓
“The quarters are worth three times the amount that the dimes are worth.”
→
Well, the quarters are worth 18 ⋅ 25 = $4.50. The dimes are worth
15 ⋅ 10 = $1.50. ✓



Using Letters as Numbers
This module shows how it can be helpful, on occasion, to use letters as
numbers in order to quickly find solutions to variations on a simultaneous
equation problem.

Toward the end of this chapter, there are some problems in substitution and
elimination where letters are used in place of numbers. For instance,
consider the following problem:
Equation:

2y − ax = 7

Equation:

4y + 3ax = 9

What do we do with those "a"s? Like any other variable, they simply
represent an unknown number. As we solve for x, we will simply leave a as
a variable.

This problem lends itself more naturally to elimination than to substitution,
so I will double the top equation and then subtract the two equations and
solve.
Equation:

Equation:

x =
5

−5a
=

−1

a

As always, we can solve for the second variable by plugging into either of
our original equations.

4y − 2ax = 14

−(4y + 3ax = 9)

0y − 5ax = 5



Equation:

2y − a(
−1

a
) = 7

Equation:

2y + 1 = 7

Equation:

y = 3

There is no new math here, just elimination. The real trick is not to be
spooked by the a, and do the math just like you did before.

And what does that mean? It means we have found a solution that works
for those two equations, regardless of a. We can now solve the following
three problems (and an infinite number of others) without going through the
hard work.

If a = 5, If a = 10, If a = −3,

The original
equations become:

The original
equations become:

The original
equations become:

And the solution is: And the solution is: And the solution is:

2y − 5x = 7

4y + 15x = 9

2y − 10x = 7

4y + 30x = 9

2y + 3x = 7

4y − 9x = 9



If a = 5, If a = 10, If a = −3,

x = −1
5 ,y = 3 x = −1

10 ,y = 3 x = 1
3 ,y = 3

The whole point is that I did not have to solve those three problems—by
elimination, substitution, or anything else. All I had to do was plug a into
the general answer I had already found previously. If I had to solve a
hundred such problems, I would have saved myself a great deal of time by
going through the hard work once to find a general solution!

Mathematicians use this trick all the time. If they are faced with many
similar problems, they will attempt to find a general problem that
encompasses all the specific problems, by using variables to replace the
numbers that change. You will do this in an even more general way in the
text, when you solve the “general” simultaneous equations where all the
numbers are variables. Then you will have a formula that you can plug any
pair of simultaneous equations into to find the answer at once. This formula
would also make it very easy, for instance, to program a computer to solve
simultaneous equations (computers are terrible at figuring things out, but
they’re great at formulas).



Multiplying Binomials
This module teaches about multiplying binomials. Specifically about common patterns that can be
memorized and using the "FOIL" method.

The following three formulae should be memorized.
Equation:

(x + a)
2

= x
2 + 2ax + a

2

Equation:

(x − a)
2

= x
2 − 2ax + a

2

Equation:

(x + a)(x − a) = x
2 − a

2

It is important to have these three formulae on the top of your head. It is also nice to be able to show
why these formulae work, for instance by using FOIL. But the most important thing of all is knowing
what these three formulae mean, and how to use them.

These three are all “algebraic generalizations,” as discussed in the first unit on functions. That is, they
are equations that hold true for any values of x and a. It may help if you think of the second equation
above as standing for:

(Anthing − Anything Else)
2

= Anything
2

− 2(Anything Else)
2For instance, suppose the

Anything (or x) is 5, and the Anything Else (or a) is 3.

Example:
(x − a)

2
= x

2 − 2ax + a
2,
when
x = 5, a = 3.

5 − 32
?

= 52 − 2(3)(5) + 32

22
?

= 25 − 30 + 9
4 = 4

It worked! Now, let’s leave the Anything as x, but play with different values of a.

Example:
More examples of
(x − a)

2
= x

2 − 2ax + a
2

Equation:



Once you’ve seen a few of these, the pattern becomes evident: the number doubles to create the middle
term (the coefficient of x), and squares to create the final term (the number).

The hardest thing about this formula is remembering to use it. For instance, suppose you are asked to
expand:
Equation:

(2y − 6)
2

There are three ways you can approach this.

(2y − 6)
2, computed three different ways

Square each term FOIL Using the formula above

Did it work? If a formula is true, it should work for any y
-value; let’s test each one with y = 5
.
(Note that the second two methods got the same answer, so we only need to test that once.)

a = 1 : (x − 1)2 = x2 − 2x + 1

a = 2 : (x − 2)2 = x2 − 4x + 4

a = 3 : (x − 3)2 = x2 − 6x + 9

a = 5 : (x − 5)2 = x2 − 10x + 25

a = 10 : (x − 10)2 = x2 − 20x + 100

(2y − 6)
2

(2y)
2

− 2(6)(2y) + 62

4y2 − 24y + 36

(2y − 6)(2y − 6)

(2y)(2y) − (2y)6 − (2y)6 + 36

4y2 − 12y − 12y + 36

4y2 − 24y + 36

(2y − 6)
2

(2y)
2

− 2(6)(2y) + 62

4y2 − 24y + 36



We conclude that squaring each term individually does not work. The other two methods both
give the same answer, which works.

The first method is the easiest, of course. And it looks good. (2y)
2 is indeed 4y2. And 62 is indeed 36.

But as you can see, it led us to a false answer—an algebraic generalization that did not hold up.

I just can’t stress this point enough. It sounds like a detail, but it causes errors all through Algebra II
and beyond. When you’re adding or subtracting things, and then squaring them, you can’t just
square them one at a time. Mathematically, (x + a)

2
≠ x

2 + a
2. You can confirm this with numbers

all day. (7 + 3)
2

= 100, but 72 + 32 = 58. They’re not the same.

So that leaves the other two methods. FOIL will never lead you astray. But the third approach, the
formula, has three distinct advantages.

1. The formula is faster than FOIL.
2. Using these formulae is a specific case of the vital mathematical skill of using any formula—

learning how to plug numbers and variables into some equation that you’ve been given, and
therefore understanding the abstraction that formulae represent.

3. Before this unit is done, we will be completing the square, which requires running that particular
formula backward—which you cannot do with FOIL.

(2y − 6)
2 ?

= 4y2 − 36

(2 ⋅ 5 − 6)
2 ?

= 4y2 − 36

(10 − 6)
2 ?

= 100 − 36

42
?

= 64✗

(2y − 6)
2 ?

= 4y2 − 24y + 36

(2 ⋅ 5 − 6)
2 ?

= 4(5)
2

− 24 ⋅ 5 + 36

(10 − 6)
2 ?

= 100 − 120 + 36

42
?

= 16✓



Factoring
This module discusses how to solve quadratic equations by factoring.

When we multiply, we put things together: when we factor, we pull things
apart. Factoring is a critical skill in simplifying functions and solving
equations.

There are four basic types of factoring. In each case, I will start by showing
a multiplication problem—then I will show how to use factoring to reverse
the results of that multiplication.

“Pulling Out” Common Factors

This type of factoring is based on the distributive property, which (as you
know) tells us that:
Equation:

2x(4x2 − 7x + 3) = 8x3 − 14x2 + 6x

When we factor, we do that in reverse. So we would start with an
expression such as
8x3 − 14x2 + 6x and say “Hey, every one of those
terms is divisible by 2. Also, every one of those terms is divisible by x. So
we “factor out,” or “pull out,” a 2x.
Equation:

8x3 − 14x2 + 6x = 2x(__ − __ + __)

For each term, we see what happens when we divide that term by 2x. For
instance, if we divide 8x3 by 2x the answer is 4x2. Doing this process for
each term, we end up with:
Equation:

8x3 − 14x2 + 6x = 2x(4x2 − 7x + 3)



As you can see, this is just what we started with, but in reverse. However,
for many types of problems, this factored form is easier to work with.

As another example, consider 6x + 3. The common factor in this case is 3.
When we factor a 3 out of the 6x, we are left with 2x. When we factor a 3
out of the 3, we are left with...what? Nothing? No, we are left with 1, since
we are dividing by 3.
Equation:

6x + 3 = 3(2x + 1)

There are two key points to take away about this kind of factoring.

1. This is the simplest kind of factoring. Whenever you are trying to
factor a complicated expression, always begin by looking for
common factors that you can pull out.

2. A common factor must be common to all the terms. For instance,
8x3 − 14x2 + 6x + 7 has no common factor, since the last term is not
divisible by either 2 or x.

Factoring Perfect Squares

The second type of factoring is based on the “squaring” formulae that we
started with:
Equation:

(x + a)
2

= x2 + 2ax + a2

Equation:

(x − a)
2

= x2 − 2ax + a2

For instance, if we see x2 + 6x + 9, we may recognize the signature of the
first formula: the middle term is three doubled, and the last term is three



squared. So this is (x + 3)
2. Once you get used to looking for this pattern,

it is easy to spot.
Equation:

x2 + 10x + 25 = (x + 5)
2

Equation:

x2 + 2x + 1 = (x + 1)
2

And so on. If the middle term is negative, then we have the second
formula:
Equation:

x2 − 8x + 16 = (x − 4)
2

Equation:

x2 − 14x + 49 = (x − 7)
2

This type of factoring only works if you have exactly this case: the middle
number is something doubled, and the last number is that same something
squared. Furthermore, although the middle term can be either positive or
negative (as we have seen), the last term cannot be negative.

All this may make it seem like such a special case that it is not even worth
bothering about. But as you will see with “completing the square” later in
this unit, this method is very general, because even if an expression does
not look like a perfect square, you can usually make it look like one if you
want to—and if you know how to spot the pattern.

The Difference Between Two Squares

The third type of factoring is based on the third of our basic formulae:
Equation:



(x + a)(x − a) = x2 − a2

You can run this formula in reverse whenever you are subtracting two
perfect squares. For instance, if we see x2 − 25, we recognize that both x2

and 25 are perfect squares. We can therefore factor it as (x + 5)(x − 5).
Other examples include:

Example:

x2 − 64
= (x + 8)(x − 8)
16y2 − 49
= (4y + 7)(4y − 7)

2x2 − 18
= 2(x2 − 9)
= 2(x + 3)(x − 3)

And so on. Note that, in the last example, we begin by pulling out a 2, and
we are then left with two perfect squares. This is an example of the rule that
you should always begin by pulling out common factors before you try
anything else!

It is also important to note that you cannot factor the sum of two squares.
x2 + 4 is a perfectly good function, but it cannot be factored.

Brute Force, Old-Fashioned, Bare-Knuckle, No-Holds-Barred
Factoring

In this case, the multiplication that we are reversing is just FOIL. For
instance, consider:
Equation:

(x + 3)(x + 7) = x2 + 3x + 7x + 21 = x2 + 10x + 21



What happened? The 3 and 7 added to yield the middle term (10), and
multiplied to yield the final term (21). We can generalize this as:
(x + a)(x + b) = x2 + (a + b)x + ab.

The point is, if you are given a problem such as x2 + 10x + 21 to factor,
you look for two numbers that add up to 10, and multiply to 21. And how
do you find them? There are a lot of pairs of numbers that add up to 10, but
relatively few that multiply to 21. So you start by looking for factors of 21.

Below is a series of examples. Each example showcases a different aspect
of the factoring process, so I would encourage you not to skip over any of
them: try each problem yourself, then take a look at what I did.

If you are uncomfortable with factoring, the best practice you can get is
to multiply things out. In each case, look at the final answer I arrive at,
and multiply it with FOIL. See that you get the problem I started with. Then
look back at the steps I took and see how they led me to that answer. The
steps will make a lot more sense if you have done the multiplication
already.
Exercise:

Problem:
Factor x2 + 11x + 18

(x + __)(x + __)

Solution:

What multiplies to 18? 1 ⋅ 18, or 2 ⋅ 9, or 3 ⋅ 6.

Which of those adds to 11? 2 + 9.

(x + 2)(x + 9)

Note:Start by listing all factors of the third term. Then see which ones add
to give you the middle term you want.



Exercise:

Problem:
Factor x2 − 13x + 12

(x + __)(x + __)

Solution:

What multiplies to 12? 1 ⋅ 12, or 2 ⋅ 6, or 3 ⋅ 4

Which of those adds to 13? 1 + 12

(x − 1)(x − 12)

Note:If the middle term is negative, it doesn’t change much: it just makes
both numbers negative. If this had been x2 + 13x + 12, the process would
have been the same, and the answer would have been (x + 1)(x + 12).

Exercise:

Problem:
Factor x2 + 12x + 24

(x + __)(x + __)

Solution:

What multiplies to 24? 1 ⋅ 24, or 2 ⋅ 12, or 3 ⋅ 8, or 4 ⋅ 6

Which of those adds to 12? None of them.

It can’t be factored. It is “prime.”



Note: Some things can’t be factored. Many students spend a long time
fighting with such problems, but it really doesn’t have to take long. Try all
the possibilities, and if none of them works, it can’t be factored.

Exercise:

Problem:
Factor x2 + 2x − 15

(x + __)(x + __)

Solution:

What multiplies to 15? 1 ⋅ 15, or 3 ⋅ 5

Which of those subtracts to 2? 5–3

(x + 5)(x − 3)

Note:If the last term is negative, that changes things! In order to multiply
to –15, the two numbers will have to have different signs—one negative,
one positive—which means they will subtract to give the middle term.
Note that if the middle term were negative, that wouldn’t change the
process: the final answer would be reversed, (x + 5)(x − 3). This fits the
rule that we saw earlier—changing the sign of the middle term changes the
answer a bit, but not the process.

Exercise:

Problem:
Factor
2x2 + 24x + 72

Solution:



2(x2 + 12x + 36)

2(x + 6)
2

Note:Never forget, always start by looking for common factors to pull out.
Then look to see if it fits one of our formulae. Only after trying all that do
you begin the FOIL approach.

Exercise:

Problem:
Factor 3x2 + 14x + 16

(3x + __)(x + __)

Solution:

What multiplies to 16? 1 ⋅ 16, or 2 ⋅ 8, or 4 ⋅ 4

Which of those adds to 14 after tripling one number? 8 + 3 ⋅ 2

(3x + 8)(x + 2)

Note:If the x2 has a coefficient, and if you can’t pull it out, the problem is
trickier. In this case, we know that the factored form will look like
(3x + __)(x + __) so we can see that, when we multiply it back, one of
those numbers—the one on the right—will be tripled, before they add up to
the middle term! So you have to check the number pairs to see if any work
that way.



Checking Your Answers

There are two different ways to check your answer after factoring:
multiplying back, and trying numbers.

Example:

1. Problem: Factor 40x3 − 250x

10x(4x − 25)
First, pull out the common factor
10x(2x + 5)(2x − 5)
Difference between two squares

2. So, does
40x3 − 250x = 10x(2x + 5)(2x − 5)? First let’s check
by multiplying back.

10x(2x + 5)(2x − 5)
= (20x2 + 50x)(2x − 5)
Distributive property
= 40x3 − 100x2 + 100x2 − 250x
FOIL
= 40x3 − 250x 

3. Check by trying a number. This should work for any number. I’ll
use
x = 7
and a calculator.

40x3 − 250x = 10x(2x + 5)(2x − 5)

40(7)
3

− 250(7) = 10(7)(2 ⋅ 7 + 5)(2 ⋅ 7 − 5)
11970 = 11970 

I stress these methods of checking answers, not just because checking
answers is a generally good idea, but because they reinforce key concepts.
The first method reinforces the idea that factoring is multiplication done
backward. The second method reinforces the idea of algebraic
generalizations.



Quadratic Concepts -- Solving Quadratic Equations by Factoring

Consider the equation 4x2 + 14x − 60 = 0. This is not an algebraic
generalization, but an equation to be solved for x: that is, it asks the
question “What x value, or values, will make this equation true?” We will
be solving such equations in three different ways. The fastest and easiest is
by factoring.

Using the techniques discussed above, we can rewrite this problem as
follows. (Try it for yourself!)

4x2 + 14x − 60 = 0
Original form

2(2x − 5)(x + 6 = 0)
Factored form

The second form may look more complicated than what we started with.
But consider what this equation says. There are three numbers: 2, 2x − 5,
and x + 6. The equation says that when you multiply these three numbers,
you get 0. Ask yourself this crucial question: How can you multiply
numbers and get the answer 0?

The only way it can happen is if one of the numbers is 0. Take a moment to
convince yourself of this: if several numbers multiply to give 0, one of
those numbers must be 0.

So we have three possibilities.

2 = 0 2x − 5 = 0 x + 6 = 0

(it just isn't) x = 2 1
2 x = −6



The moral of the story is: when a quadratic equation is factored, it can be
solved easily. In this case, the equation 4x2 + 14x − 60 = 0 has two valid
solutions, x = 2 1

2

and x = −6.

Consider this example:
Equation:

x
2 − 9x + 20 = 6

A common mistake is to solve it like this.

Example:
x

2 − 9x + 20 = 6, solved incorrectly

(x − 4)(x − 5) = 6
(x − 4) = 6

x = 10 ✗

(x − 5) = 6

x = 11 ✗

All looks good, doesn’t it? The factoring was correct. But if you try x = 10
or x = 11 in the original equation, you will find that neither one works.
What went wrong?

The factoring was correct, but the next step was wrong. Just because
(x − 4)(x − 5) = 6
does not mean that either (x − 4) or (x − 5) has to be
6. There are lots of ways for two numbers to multiply to give 6. This trick
only works for 0!



Example:
x

2 − 9x + 20 = 6, solved correctly

x
2 − 9x + 14 = 0

(x − 7)(x − 2) = 0
(x − 7) = 0

x = 7 ✓

(x − 2) = 0

x = 2 ✓

You may want to confirm for yourself that these are the correct solutions.

Moral: When solving quadratic equations, always begin by moving
everything to one side of the equation, leaving only a 0 on the other side.
This is true regardless of which of the three methods you use.

Example:
x

2 + 14x + 49 = 0

(x + 7)
2

= 0
x = −7

Moral: If the left side factors as a perfect square, the quadratic equation has
only one solution.

Not all quadratic functions can be factored. This does not mean they have
no solutions! If the function cannot be factored, we must use other means to



find the solutions.



Solving Quadratic Equations by Completing the Square
This module teaches the method of solving quadratic equations by
completing the square.

Consider the equation:
Equation:

(x + 3)
2

= 16

We can solve this by analogy to the way that we approached absolute value
problems. something squared is 16. So what could the something be? It
could be 4. It could also be −4. So the solution is:

x + 3 = 4

x = 1

x + 3 = −4

x = −7

These are the two solutions.

This simple problem leads to a completely general way of solving quadratic
equations—because any quadratic equation can be put in a form like the
above equation. The key is completing the square which, in turn, is based
on our original two formulae:
Equation:

(x + a)
2

= x
2 + 2ax + a

2

Equation:

(x − a)
2

= x
2 − 2ax + a

2



As an example, consider the equation x2 + 10x + 21 = 0. In order to
make it fit one of the patterns above, we must replace the 21 with the
correct number: a number such that x2 + 10x + __ is a perfect square.
What number goes there? If you are familiar with the pattern, you know the
answer right away. 10 is 5 doubled, so the number there must be 5
squared, or 25.

But how do we turn a 21 into a 25? We add 4, of course. And if we add 4 to
one side of the equation, we have to add 4 to the other side of the equation.
So the entire problem is worked out as follows:

Example:

Solving by Completing the Square (quick-and-dirty version)

Solve x2 + 10x + 21 = 0 The problem.

x
2 + 10x + 25 = 4

Add 4 to both sides, so that the
left side becomes a perfect
square.

(x + 5)
2

= 4 Rewrite the perfect square.

If something-squared is 4, the
something can be 2, or −2
. Solve
both possibilities to find the two
answers.

x + 5 = 2

x = −3

x + 5 = −2

x = −7



Thus, we have our two solutions.

Completing the square is more time-consuming than factoring: so whenever
a quadratic equation can be factored, factoring is the preferred method. (In
this case, we would have factored the original equation as (x + 3)(x + 7)
and gotten straight to the answer.) However, completing the square can be
used on any quadratic equation. In the example below, completing the
square is used to find two answers that would not have been found by
factoring.

Example:

Solving by Completing the Square (showing all the steps more
carefully)

Solve 9x2 − 54x + 80 = 0 The problem.

9x2 − 54x = −80
Put all the x
terms on one side,
and the number on the other

x
2 − 6x = − 80

9
Divide both sides by the
coefficient of x2
(*see below)

x
2 − 6x+9 = − 80

9
+ 9–

Add the same number (*see
below) to both sides, so that the
left side becomes a perfect
square.

(x − 3)
2

= − 80
9 + 81

9 = 1
9 Rewrite the perfect square.



Solving by Completing the Square (showing all the steps more
carefully)

If something-squared is 1
9


, the
something can be 1

3 
, or − 1
3 
.

Solve both possibilities to find
the two answers.

Two steps in particular should be pointed out here.

In the third step, we divide both sides by 9. When completing the square,
you do not want to have any coefficient in front of the term; if there is a
number there, you divide it out. Fractions, on the other hand (such as the

− 80

9
 in this case) do not present a problem. This is in marked contrast to

factoring, where a coefficient in front of the x2 can be left alone, but
fractions make things nearly impossible.

The step after that is where we actually complete the square. x2 + 6x + __
will be our perfect square. How do we find what number we want? Start
with the coefficient of x2 (in this case, 6). Take half of it, and square the
result. Half of 6 is 3, squared is 9. So we want a 9 there to create
x

2 + 6x + 9 which can be simplified to (x + 3)
2.

If the coefficient of x is an odd number, the problem becomes a little
uglier, but the principle is the same. For instance, faced with:
Equation:

x
2 + 5x + __

x − 3 = 1
3

x = 3 1
3

x − 3 = − 1
3

x = 2 2
3



You would begin by taking half of 5 (which is 5
2 ) and then squaring it:

x
2 + 5x + 25

4 = (x + 5
2 )

2

Another “completing the square” example, in which you cannot get rid of
the square root at all, is presented in the worksheet “The Generic Quadratic
Equation.”

One final note on completing the square: there are three different possible
outcomes.

If you end up with something like (x − 3)
2

= 16 you will find two
solutions, since x − 3 can be either 4, or −4. You will always have
two solutions if the right side of the equation, after completing the
square, is positive.
If you end up with (x − 3)

2
= 0 then there is only one solution: x

must be 3 in this example. If the right side of the equation is 0 after
completing the square, there is only one solution.
Finally, what about a negative number on the right, such as
(x − 3)

2
= −16? Nothing squared can give a negative answer, so

there is no solution.



The Quadratic Formula
This module discusses the quadratic formula.

In "Solving Quadratic Equations by Completing the Square" I talked about
the common mathematical trick of solving a problem once, using letters
instead of numbers, and then solving specific problems by plugging
numbers into a general solution.

In the text, you go through this process for quadratic equations in general.
The definition of a quadratic equation is any equation that can be written in
the form:
Equation:

ax2 + bx + c = 0

where a ≠ 0. By completing the square on this generic equation, you arrive
at the quadratic formula:
Equation:

x =
−b ± √b2 − 4ac

2a

This formula can then be used to solve any quadratic equation, without
having to complete the square each time. To see how this formula works, let
us return to the previous problem:
Equation:

9x2 − 54x + 80 = 0

In this case, a = 9, b = −54, and c = 80. So the quadratic formula tells us
that the answers are:
Equation:

x =
−(−54) ± (−54)2 − 4(9)(80)

2(9)



We’ll use a calculator here rather than squaring 54 by hand....
Equation:

x =
54 ± √2916 − 2880

18
=

54 ± √36

18
=

54 ± 6

18
=

9 ± 1

3

So we find that the two answers are 10
3  and 8

3 , which are the same answers
we got by completing the square.

Using the quadratic formula is usually faster than completing the square,
though still slower than factoring. So, in general, try to factor first: if you
cannot factor, use the quadratic formula.

So why do we learn completing the square? Two reasons. First, completing
the square is how you derive the quadratic formula. Second, completing the
square is vital to graphing quadratic functions, as you will see a little
further on in the chapter.



Quadratic Concepts -- Different Types of Solutions to Quadratic Equations

The heart of the quadratic formula is the part under the square root:
b2 − 4ac. This part is so important that it is given its own name: the
discriminant. It is called this because it discriminates the different types
of solutions that a quadratic equation can have.

Common Error
Students often think that the discriminant is √b2 − 4ac. But the
discriminant is not the square root, it is the part that is under the square
root:
Equation:

Discriminant = b2 − 4ac

It can often be computed quickly and easily without a calculator.

Why is this quantity so important? Consider the above example, where the
discriminant was 36. This means that we wound up with ±6 in the
numerator. So the problem had two different, rational answers: 2 2

3  and
3 1
3 .

Now, consider x2 + 3x + 1 = 0. In this case, the discriminant is
32 − 4(1)(1) = 5. We will end up with ±√5 in the numerator. There will
still be two answers, but they will be irrational—they will be impossible to
express as a fraction without a square root.

4x2 − 20x + 25 = 0. Now the discriminant is
202 − 4(4)(25) = 400 − 400 = 0. We will end up with ±0 in the
numerator. But it makes no difference if you add or subtract 0; you get the
same answer. So this problem will have only one answer.

And finally, 3x2 + 5x + 4. Now,
b2 − 4ac = 52 − 4(3)(4) = 25 − 48 = −23. So in the numerator we will
have √−23. Since you cannot take the square root of a negative number,
there will be no solutions!
Summary: The Discriminant



If the discriminant is a perfect square, you will have two rational
solutions.
If the discriminant is a positive number that is not a perfect square, you
will have two irrational solutions (ie they will have square roots in
them).
If the discriminant is 0, you will have one solution.
If the discriminant is negative, you will have no solutions.

These rules do not have to be memorized: you can see them very quickly by
understanding the quadratic formula (which does have to be memorized—if
all else fails, try singing it to the tune of Frère Jacques).

Why is it that quadratic equations can have 2 solutions, 1 solution, or no
solutions? This is easy to understand by looking at the following graphs.
Remember that in each case the quadratic equation asks when the function
is 0—that is to say, when it crosses the x-axis.

More on how to generate these graphs is given below. For the moment, the
point is that you can visually see why a quadratic function can equal 0
twice, or one time, or never. It can not equal 0 three or more times.

y = x2 − 2
Equals 0
two times

y = x2
Equals
0 once

y = x2 + 2
. Never
equals 0



Graphing Quadratic Equations
This module covers the graphing of quadratic equations.

The graph of the simplest quadratic function, y = x2, looks like this:

(You can confirm this by plotting points.) The point at the bottom of the U-
shaped curve is known as the “vertex.”

Now consider the function y = −3(x + 2)
2

+ 1. It’s an intimidating
function, but we have all the tools we need to graph it, based on the
permutations we learned in the first unit. Let’s step through them one by
one.

What does the – sign do? It multiplies all y-values by −1; positive
values become negative, and vice-versa. So we are going to get an
upside-down U-shape. We say that y = x2 “opens up” and y = −x2

“opens down.”
What does the 3 do? It multiplies all y-values by 3; positive values
become more positive, and negative values become more negative. So
it vertical stretches the function.
What does the +1 at the end do? It adds 1 to all y-values, so it moves
the function up by 1.
Finally, what does the +2 do? This is a horizontal modification: if we
plug in x = 10, we will be evaluating the function at x = 12. In
general, we will always be copying the original x2 function to our
right; so we will be 2 units to the left of it.

So what does the graph look like? It has moved 2 to the left and 1 up, so the
vertex moves from the origin (0,0) to the point (−2,1). The graph has also
flipped upside-down, and stretched out vertically.



So graphing quadratic functions is easy, no matter how complex they are, if
you understand permutations—and if the functions are written in the form
y = a(x − h)

2
+ k, as that one was.

Graphing Quadratic Functions
The graph of a quadratic function is always a vertical parabola. If the
function is written in the form y = a(x − h)

2
+ k then the vertex is at

(h,k). If a is positive, the parabola opens up; if a is negative, the parabola
opens down.

But what if the functions are not expressed in that form? We’re more used
to seeing them written as y = ax2 + bx + c . For such a function, you
graph it by first putting it into the form we used above, and then graphing it.
And the way you get it into the right form is...completing the square! This
process is almost identical to the way we used completing the square to
solve quadratic equations, but some of the details are different.

Example:

Graphing a Quadratic Function



Graphing a Quadratic Function

Graph 2x2 − 20x + 58 The problem.

2(x2 − 10x) + 58

We used to start out by
dividing both sides by the
coefficient of x2
(2 in this case).
In this case, we don’t have
another side: we can’t make
that 2 go away. But it’s still in
the way of completing the
square. So we factor it out of
the first two terms. Do not
factor it out of the third
(numerical) term; leave that
part alone, outside of the
parentheses.

2(x2 − 10x + 25) + 58 − 50

Inside the parentheses, add the
number you need to complete
the square. (Half of 10,
squared.)Now, when we add 25
inside the parentheses, what
we have really done to our
function? We have added 50,
since everything in parentheses
is doubled. So we keep the
function the same by
subtracting that 50 right back
again, outside the parentheses!
Since all we have done in this
step is add 50 and then
subtract it, the function is
unchanged.



Graphing a Quadratic Function

2(x − 5)
2

+ 8

Inside the parentheses, you
now have a perfect square and
can rewrite it as such. Outside
the parentheses, you just have
two numbers to combine.

Vertex
(5,8)
opens up

Since the function is now in the
correct form, we can read this
information straight from the
formula and graph it. Note
that the number inside the
parentheses (the h) always
changes sign; the number
outside (the k) does not.

So there’s the graph! It’s easy
to draw once you have the
vertex and direction. It’s also
worth knowing that the 2
vertically stretches the graph,
so it will be thinner than a
normal x2.

This process may look intimidating at first. For the moment, don’t worry
about mastering the whole thing—instead, look over every individual step
carefully and make sure you understand why it works—that is, why it keeps
the function fundamentally unchanged, while moving us toward our goal of
a form that we can graph.

The good news is, this process is basically the same every time. A different
example is worked through in the worksheet “Graphing Quadratic



Functions II”—that example differs only because the x2 term does not have
a coefficient, which changes a few of the steps in a minor way. You will
have plenty of opportunity to practice this process, which will help you get
the “big picture” if you understand all the individual steps.

And don’t forget that what we’re really creating here is an algebraic
generalization!
Equation:

2x2 − 20x + 58 = 2(x − 5)
2

+ 8

This is exactly the sort of generalization we discussed in the first unit—the
assertion that these two very different functions will always give the same
answer for any x-value you plug into them. For this very reason, we can
also assert that the two graphs will look the same. So we can graph the first
function by graphing the second.



Quadratic Concepts -- Solving Problems by Graphing Quadratic Functions

Surprisingly, there is a fairly substantial class of real world problems that
can be solved by graphing quadratic functions.

These problems are commonly known as “optimization problems” because
they involve the question: “When does this important function reach its
maximum?” (Or sometimes, its minimum?) In real life, of course, there
are many things we want to maximize—a company wants to maximize its
revenue, a baseball player his batting average, a car designer the leg room
in front of the driver. And there are many things we want to minimize—a
company wants to minimize its costs, a baseball player his errors, a car
designer the amount of gas used. Mathematically, this is done by writing a
function for that quantity and finding where that function reaches its highest
or lowest point.

Example:
Exercise:

Problem:

If a company manufactures x items, its total cost to produce these
items is x3 − 10x2 + 43x. How many items should the company
make in order to minimize its average cost per item?

Solution:

“Average cost per item” is the total cost, divided by the number of
items. For instance, if it costs $600 to manufacture 50 items, then the
average cost per item was $12. It is important for companies to
minimize average cost because this enables them to sell at a low price.

In this case, the total cost is x3 − 10x
2 + 43x and the number of items is x

. So the average cost per item is



Equation:

A(x) =
x3 − 10x2 + 43x

x
= x

2 − 10x + 43

What the question is asking, mathematically, is: what value of x makes this
function the lowest?

Well, suppose we were to graph this function. We would complete the
square by rewriting it as:
Equation:

A(x) = x
2 − 10x + 25 + 18 = (x − 5)

2
+ 18

The graph opens up (since the (x − 5)
2term is positive), and has its vertex

at (5,18) (since it is moved 5 to the right and 18 up). So it would look
something like this:

I have graphed only the first quadrant, because negative values are not
relevant for this problem (why?).

The real question here is, what can we learn from that graph? Every point
on that graph represents one possibility for our company: if they
manufacture x items, the graph shows what A(x), the average cost per
item, will be.



The point (5,18) is the lowest point on the graph. It is possible for x to be
higher or lower than 5, but it is never possible for A to be lower than 18. So
if its goal is to minimize average cost, their best strategy is to manufacture 5
items, which will bring their average cost to $18/item.



Quadratic Inequalities
This module covers quadratic inequalities.

Consider the following inequality:
Equation:

−x
2 + 6x − 8 ≤ 0

There are a number of different ways to approach such a problem. The one
that is stressed in the text is by graphing.

We begin by graphing the function y = −x2 + 6x − 8. We know how to
graph this function by completing the square, but we’re going to take a
shortcut—one that will not actually tell us what the vertex is, but that will
give us what we need to know. The shortcut relies on finding only two facts
about the quadratic function: what are its roots (the places it crosses the x-
axis), and which way does it open?

Of course we know three ways to find the roots of a quadratic equation: the
easiest is always factoring when it works, as it does in this case.
Equation:

−x
2 + 6x − 8 = 0

Equation:

(x − 4)(−x + 2) = 0

Equation:

x = 0,x = 2

Second, which way does the parabola open? Since it is a vertical parabola
with a negative coefficient of the x2 term, it opens down.

So the graph looks like this:



(Hey, if it’s that easy to graph a quadratic function, why did we spend
all that time completing the square? Well, this method of graphing does
not tell you the vertex. It tells us all we need to solve the quadratic
inequality, but not everything about the graph. Oh. Darn. Anyway, back to
our original problem.)

If that is the graph of y = −x2 + 6x − 8, then let us return to the original
question: when is −x

2 + 6x − 8less than or equal to 0? What this
question is asking is: when does this graph dip below the x-axis? Looking
at the graph, the answer is clear: the graph is below the x-axis, and
therefore the function is negative, whenever x ≤ 2orx ≥ 4.

When students graph these functions, they tend to get the right answer.
Where students go wrong is by trying to take “shortcuts.” They find where
the function equals zero, and then attempt to quickly find a solution based
on that. To see where this goes wrong, consider the following:
Equation:

x
2 − 2x + 2 ≥ 0

If you attempt to find where this function equals zero—using, for instance,
the quadratic formula—you will find that it never does. (Try it!) Many
students will therefore quickly answer “no solution.” Quick, easy—and
wrong. To see why, let’s try graphing it.
Equation:

y = x
2 − 2x + 2 = x

2 − 2x + 1 + 1 = (x − 1)
2

+ 1



The original question asked: when is this function greater than or equal to
zero? The graph makes it clear: everywhere. Any x value you plug into this
function will yield a positive answer. So the solution is: “All real numbers.”

“Extra for Experts”: Quadratic Inequalities by Factoring

This technique is not stressed in this book. But it is possible to solve
quadratic inequalities without graphing, if you can factor them.

Let’s return to the previous example:
Equation:

−x
2 + 6x − 8 ≤ 0

Equation:

(x − 4)(−x + 2) ≤ 0

When we solved quadratic equations by factoring, we asked the question:
“How can you multiply two numbers and get 0?” (Answer: when one of
them is 0.) Now we ask the question: “How can you multiply two numbers
and get a negative answer?” Answer: when the two numbers have
different signs. That is, the product will be negative if...

The first is positive and the OR The first is negative and



second negative the second positive

x − 4 ≥ 0 AND
−x + 2 ≤ 0

OR x − 4 ≤ 0 AND
−x + 2 ≥ 0

x ≥ 4 AND −x ≤ −2 OR x ≤ 4 AND −x ≥ −2

x ≥ 4 AND x ≥ 2 OR x ≤ 4 AND x ≤ 2

x ≥ 4 OR x ≤ 2

This is, of course, the same answer we got by graphing.



Exponent Concepts -- Introduction

An exponent means repeated multiplication. For instance, 10
6 means

10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10, or 1,000,000.

You’ve probably noticed that there is a logical progression of operations.
When you add the same number repeatedly, that’s multiplication. When
you multiply the same number repeatedly, that’s an exponent.

However, there is one vital difference: addition and multiplication
commute, but exponentiation does not commute. This is a fancy way of
saying that order matters. 2 + 3 = 3 + 2; and 2 ⋅ 3 = 3 ⋅ 2, but 23 is not
the same as 32.



Laws of Exponents
This module covers the laws the govern the manipulation of exponents in
algebra.

The following are generally referred to as the “laws” or “rules” of
exponents.
Equation:

x
a
x

b = x
a+b

Equation:

x
a

xb
= x

a−b or
1

xb−a

Equation:

(x
a)b = x

ab

As with any formula, the most important thing is to be able to use them—
that is, to understand what they mean. But it is also important to know
where these formulae come from. And finally, in this case, the three
should be memorized.

So...what do they mean? They are, of course, algebraic generalizations—
statements that are true for any x, a, and b values. For instance, the first rule
tells us that:
Equation:

712 ⋅ 74 = 716

which you can confirm on your calculator. Similarly, the third rule promises
us that
Equation:

(712)4 = 748



These rules can be used to combine and simplify expressions.

Example:

Simplifying with the Rules of Exponents

(x3)
4
⋅x5

x9⋅x11

= x12⋅x5

x9⋅x11 Third rule: (x
a)b = x

ab, wherea = 3andb = 4

= x17

x20

First rule: xa
x

b = x
a+b, done on both the top and

bottom

= 1
x3

Second rule: xa

xb
= 1

xb−a
, where we choose this form

to avoid a negative exponent

Why do these rules work? It’s very easy to see, based on what an exponent
is.

Why does the first rule work?



Why does the first rule work?

193 194

= (19 ⋅ 19 ⋅ 19) (19 ⋅ 19 ⋅ 19 ⋅ 19)

= 197

You see what happened? 193 means three 19s multiplied; 194 means four
19s multiplied. Multiply them together, and you get seven 19s multiplied.

Why does the second rule work?

First form Second form

198

195
195

198

= 19⋅19⋅19⋅19⋅19⋅19⋅19⋅19
19⋅19⋅19⋅19⋅19

= 19⋅19⋅19⋅19⋅19
19⋅19⋅19⋅19⋅19⋅19⋅19⋅19

= 193 = 1

193

In this case, the key is fraction cancellations. When the top is multiplied
by 19 and the bottom is multiplied by 19, canceling these 19s has the effect
of dividing the top and bottom by 19. When you divide the top and bottom
of a fraction by the same number, the fraction is unchanged.



You can also think of this rule as the inevitable consequence of the first
rule. If 193 ⋅ 195 = 198, then 198

195  (which asks the question “
195 times
what equals 198?”) must be 193.

Why does the third rule work?

(193)
4

= (19 ⋅ 19 ⋅ 19) ⋅ (19 ⋅ 19 ⋅ 19) ⋅ (19 ⋅ 19 ⋅ 19) ⋅ (19 ⋅ 19 ⋅ 19)

= 1912

What does it mean to raise something to the fourth power? It means to
multiply it by itself, four times. In this case, what we are multiplying by
itself four times is 193, or (19 ⋅ 19 ⋅ 19). Three 19s multiplied four times
makes twelve 19s multiplied.



Zero, Negative Numbers, and Fractions as Exponents
This module covers how zero, negative numbers, and fractions can be used as exponents.

The definition of exponents given at the beginning of this section—
106means 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10—does
not enable us to answer questions such as:
Equation:

40 = ?

Equation:

5−4 = ?

Equation:

9
1
2 = ?

You can’t “multiply 9 by itself half a time” or “multiply 5 by itself −4 times.” In general, the original definition
only applies if the exponent is a positive integer.

It’s very important to understand this point. The question is not “What answer does our original definition give
in these cases?” The original definition does not give any answer in these cases. If we want to include these
numbers, we need a whole new definition of what an exponent is.

In principle, many such definitions are possible. We could define 5−4 as 5/5/5/5: in other words, divide four
times instead of multiplying four times. Or we could define 5−4as 5−4: take 5 to the fourth power, and then
multiply it by −1. Or we could define 5−4 as −(5)4: take −5 to the fourth power (which gives a different
answer from the previous definition). It seems at first that we are at liberty to choose any definition we want.

Given that degree of freedom, you may be very surprised at the definitions that are actually used: they seem far
more arbitrary and complicated than some others you could come up with.

Zero
exponents

Negative
exponents

Fractional exponents
(numerator = 1)

Fractional exponents
(numerator ≠ 1)

Always 1 Go in the
denominator Act as roots

The numerator is an
exponent

The denominator is a root

70 = 1

90 = 1

x

0 = 1

7−3 = 1
73 = 1

343

x
−5 = 1

x
5 


1
5−3 = 53

9
1
2 = √9 = 3


2
1
2 = √2


8
1
3 = 3√8 = 2


x
1
4 = 4√x

8
2
3 = 3√82
or ( 3√8)

2





Order doesn't matter!


3√82 = 3√64 = 4
or

( 3√8)
2

= 22 = 4





8
3
2 = √83
or (√8)

3



Definitions: When the exponent is not a positive integer

Note that you can combine these definitions. For instance, 8− 2
3  is a negative, fractional exponent. The negative

exponent means, as always, “put me in the denominator.” So we can write:
Equation:

8− 2
3 =

1

8
2
3

=
1

3√82
=

1

4

OK, so why define exponents that way?

These are obviously not chosen to be the simplest possible definitions. But they are chosen to be consistent with
the behavior of positive-integer exponents.

One way to see that consistency is to consider the following progression:
Equation:

194 = 19 ⋅ 19 ⋅ 19 ⋅ 19

Equation:

193 = 19 ⋅ 19 ⋅ 19

Equation:

192 = 19 ⋅ 19

Equation:

191 = 19

What happens each time we decrease the exponent by 1? Your first response might be “we have one less 19.”
But what is really happening, mathematically, to the numbers on the right? The answer is that, with each step,
they are dividing by 19. If you take 19 ⋅ 19 ⋅ 19 ⋅ 19, and divide it by 19, you get 19 ⋅ 19 ⋅ 19. Divide that by 19
again, and you get 19 ⋅ 19...and so on. From this we can formulate the following principle for the powers of 19:

Whenever you subtract 1 from the exponent, you divide the answer by 19.

As I said earlier, we want the behavior of our new exponents to be consistent with the behavior of the old
(positive-integer) exponents. So we can continue this progression as follows:
Equation:

190 =
19

19
= 1

Equation:

19−1 =
1

19

Equation:

19−2 =
1
19

19
=

1

192



...and so on. We can arrive at our definitions anything0 = 1 and negative exponents go in the denominator by
simply requiring this progression to be consistent.

More rigorously, we can find all our exponent definitions by using the laws of exponents. For instance, what is
40? We can approach this question indirectly by asking: what is 42

42 ?

The second law of exponents tells us that 42

42 = 42−2, which is of course 40.
But of course, 42

42  is just 16
16 , or 1.

Since 42

42  is both 40and 1, 40 and 1 must be the same thing!

The proofs given below all follow this pattern. They use the laws of exponents to rewrite expressions such as 42

42 ,
and go on to show how zero, negative, and fractional exponents must be defined. We started with the definition
of an exponent for a positive integer, 106 = 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10. From there, we developed the laws of
exponents. Now we find that, if we want those same laws to apply to other kinds of exponents, there is only one
correct way to define those other kinds of exponents.

Proofs: When the exponent is not a positive integer

Zero exponents Negative exponents
Fractional exponents
(numerator = 1)

Fractional exponents
(numerator ≠ 1)

Always 1 Go in the denominator Act as roots

The numerator is an
exponent

The denominator is a
root

42

42 = 42−2 = 40

but
42

42 = 16
16 = 1


so 40 must be 1!

101

103 = 101−3 = 10−2

but
101

103 = 10
10⋅10⋅10

= 1
10⋅10

so 10−2
must be 1
102

(9
1
2 )2 = 9

1
2 ⋅2 = 91 = 9

So what is 9
1
2 
?


Well, when you square
it, you get 9.

So it must be √9, or 3!

8
2
3 = (8

1
3 )

2
= ( 3√8)

2

or

8

2
3 = (82)

1
3 = 3√82

You may want to experiment with making these proofs more general and more rigorous by using letters instead
of numbers. For instance, in the third case, we could write:
Equation:

(x

1
a )a = x

( 1
a
)(a) = x

1

Equation:

(x

1
a )a = x

Equation:

a√(x)
a

= a√x

Equation:



x

1
a = a√x



Exponential Curves
This module discusses the graphing of exponential curves.

By plotting points, you can discover that the graph of y = 2x looks like
this:

A few points to notice about this graph.

It goes through the point (0,1) because 20 = 1.
It never dips below the x-axis. The domain is unlimited, but the range
is y>0. (*Think about our definitions of exponents: whether x is
positive or negative, integer or fraction, 2x is always positive.)
Every time you move one unit to the right, the graph height doubles.
For instance, 25 is twice 24, because it multiplies by one more 2. So as
you move to the right, the y-values start looking like 8, 16, 32, 64, 128,
and so on, going up more and more sharply.
Conversely, every time you move one unit to the left, the graph height
drops in half. So as you move to the left, the y-values start looking like
1
2 , 1

4 , 1
8 , and so on, falling closer and closer to 0.

What would the graph of y = 3x look like? Of course, it would also go
through (0,1) because 30 = 1. With each step to the right, it would triple;
with each step to the left, it would drop in a third. So the overall shape
would look similar, but the rise (on the right) and the drop (on the left)
would be faster.

y = 2x



As you might guess, graphs such as 5x and 10x all have this same
characteristic shape. In fact, any graph ax where a > 1 will look basically
the same: starting at (0,1) it will rise more and more sharply on the right,
and drop toward zero on the left. This type of graph models exponential
growth—functions that keep multiplying by the same number. A common
example, which you work through in the text, is compound interest from a
bank.

The opposite graph is ( 1
2
)

x
.

y = 2x
in
thin line;

y = 3x
in
thick line;

They
cross at
(0,1)

y = ( 1
2 )

x



Each time you move to the right on this graph, it multiplies by 1
2 : in other

words, it divides by 2, heading closer to zero the further you go. This kind
of equation is used to model functions that keep dividing by the same
number; for instance, radioactive decay. You will also be working through
examples like this one.

Of course, all the permutations from the first chapter on “functions” apply
to these graphs just as they apply to any graph. A particularly interesting
example is 2−x. Remember that when you replace x with −x, f(3)
becomes the old f(−3) and vice-versa; in other words, the graph flips
around the y-axis. If you take the graph of 2x and permute it in this way,
you get a familiar shape:

Yes, it’s ( 1
2 )

x
 in a new disguise!

Why did it happen that way? Consider that ( 1
2 )

x
= 1x

2x . But 1x is just 1 (in
other words, 1 to the anything is 1), so ( 1

2 )
x

= 1
2x . But negative

exponents go in the denominator: 1
2x  is the same thing as 2−x! So we arrive

at: ( 1
2 )

x
= 2−x. The two functions are the same, so their graphs are of

course the same.

Another fun pair of permutations is:

y = 2 ⋅ 2x
Looks just like y = 2x
but vertically stretched: all y-values
double

y = 2−x



y = 2x+1
Looks just like y = 2x
but horizontally shifted: moves 1 to the
left

If you permute 2x in these two ways, you will find that they create the same
graph.

Once again, this is predictable from the rules of exponents:
2 ⋅ 2x = 21 ⋅ 2x = 2x+1

Using exponential functions to model behavior

In the first chapter, we talked about linear functions as functions that add
the same amount every time. For instance, y = 3x + 4 models a function
that starts at 4; every time you increase x by 1, you add 3 to y.

Exponential functions are conceptually very analogous: they multiply by
the same amount every time. For instance, y = 4 × 3x models a function
that starts at 4; every time you increase x by 1, you multiplyy by 3.

Linear functions can go down, as well as up, by having negative slopes:
y = −3x + 4 starts at 4 and subtracts 3 every time. Exponential functions
can go down, as well as up, by having fractional bases: y = 4 × ( 1

3 )x

starts at 4 and divides by 3 every time.

y = 2 ⋅ 2x

aka
y = 2x+1



Exponential functions often defy intuition, because they grow much faster
than people expect.

Modeling exponential functions
Your father’s house was worth $100,000 when he bought it in 1981.
Assuming that it increases in value by 8% every year, what was the house
worth in the year 2001? (*Before you work through the math, you may
want to make an intuitive guess as to what you think the house is worth.
Then, after we crunch the numbers, you can check to see how close you
got.)

Often, the best way to approach this kind of problem is to begin by making
a chart, to get a sense of the growth pattern.

Year Increase in Value Value

1981 N/A 100,000

1982 8% of 100,000 = 8,000 108,000

1983 8% of 108,000 = 8,640 116,640

1984 8% of 116,640 = 9,331 125,971

Before you go farther, make sure you understand where the numbers
on that chart come from. It’s OK to use a calculator. But if you blindly
follow the numbers without understanding the calculations, the whole rest
of this section will be lost on you.

In order to find the pattern, look at the “Value” column and ask: what is
happening to these numbers every time? Of course, we are adding 8% each
time, but what does that really mean? With a little thought—or by looking



at the numbers—you should be able to convince yourself that the numbers
are multiplying by 1.08 each time. That’s why this is an exponential
function: the value of the house multiplies by 1.08 every year.

So let’s make that chart again, in light of this new insight. Note that I can
now skip the middle column and go straight to the answer we want. More
importantly, note that I am not going to use my calculator this time—I don’t
want to multiply all those 1.08s, I just want to note each time that the
answer is 1.08 times the previous answer.

Year House Value

1981 100,000

1982 100,000 × 1.08

1983 100,000 × 1.082

1984 100,000 × 1.083

1985 100,000 × 1.084

y 100,000 × 1.08something

If you are not clear where those numbers came from, think again about the
conclusion we reached earlier: each year, the value multiplies by 1.08. So if
the house is worth 100,000 × 1.082in 1983, then its value in 1984 is
(100,000 × 1.082) × 1.08, which is 100,000 × 1.083.

Once we write it this way, the pattern is clear. I have expressed that pattern
by adding the last row, the value of the house in any year y. And what is the



mystery exponent? We see that the exponent is 1 in 1982, 2 in 1983, 3 in
1984, and so on. In the year y, the exponent is y − 1981.

So we have our house value function:
Equation:

v(y) = 100,000 × 1.08y−1981

That is the pattern we needed in order to answer the question. So in the year
2001, the value of the house is 100,000 × 1.0820. Bringing the calculator
back, we find that the value of the house is now $466,095 and change.

Wow! The house is over four times its original value! That’s what I mean
about exponential functions growing faster than you expect: they start out
slow, but given time, they explode. This is also a practical life lesson about
the importance of saving money early in life—a lesson that many people
don’t realize until it’s too late.



Logarithm Concepts
This module introduces the concept of logarithms.

Suppose you are a biologist investigating a population that doubles every
year. So if you start with 1 specimen, the population can be expressed as an
exponential function: p(t) = 2t where t is the number of years you have
been watching, and p is the population.

Question: How long will it take for the population to exceed 1,000
specimens?

We can rephrase this question as: “2 to what power is 1,000?” This kind of
question, where you know the base and are looking for the exponent, is
called a logarithm.

log21000 (read, “the logarithm, base two, of a thousand”) means “2, raised
to what power, is 1000?”

In other words, the logarithm always asks “What exponent should we
use?” This unit will be an exploration of logarithms.

A few quick examples to start things off

Problem Means The answer
is because

log28
2 to what
power is
8?

3 23 is 8

log216 2 to what
power is

4 24 is 16



16?

log210
2 to what
power is
10?

somewhere
between 3
and 4

23 = 8
and
24 = 16

log82
8 to what
power is
2?

1
3 8

1
3 = 3√8 = 2

log1010,000

10 to
what
power is
10,000?

4 104 = 10,000

log10(
1

100 )

10 to
what
power is 

1
100  ?

–2 10–2 = 1
102 = 1

100

log50
5 to what
power is
0?

There is no
answer

5something will
never be 0

As you can see, one of the most important parts of finding logarithms is
being very familiar with how exponents work!



Logarithm Concepts -- The logarithm explained by analogy to roots

The logarithm may be the first really new concept you’ve encountered in
Algebra II. So one of the easiest ways to understand it is by comparison
with a familiar concept: roots.

Suppose someone asked you: “Exactly what does root mean?” You do
understand roots, but they are difficult to define. After a few moments, you
might come up with a definition very similar to the “question” definition of
logarithms given above. 3√8 means “what number cubed is 8?”

Now the person asks: “How do you find roots?” Well...you just play around
with numbers until you find one that works. If someone asks for √25, you
just have to know that 52 = 25. If someone asks for √30, you know that
has to be bigger than 5 and smaller than 6; if you need more accuracy, it’s
time for a calculator.

All that information about roots applies in a very analogous way to
logarithms.

Roots Logs

The
question

a√x means “what
number, raised to the a
power, is x?” As an
equation, ? a = x

log
a
x means “
a, raised

to what power, is x?” As
an equation, a? = x

Example
that
comes
out even

3√8 = 2 log28 = 3



Roots Logs

Example
that
doesn’t

3√10 is a bit more than 2
log210 is a bit more than
3

Out of
domain
example

√−4does not exist (
x2

will never give −4)

log2(0) and log2(−1)
do not exist (
2x will
never give 0 or a
negative answer)



Rewriting Logarithm Equations as Exponent Equations
This module discusses how equations involving logarithms can be re-
written using exponents.

Both root equations and logarithm equations can be rewritten as exponent
equations.

√9 = 3 can be rewritten as 32 = 9. These two equations are the same
statement about numbers, written in two different ways. √9 asks the
question “What number squared is 9?” So the equation √9 = 3asks this
question, and then answers it: “3 squared is 9.”

We can rewrite logarithm equations in a similar way. Consider this
equation:
Equation:

log3

1

3
= −1

If you are asked to rewrite that logarithm equation as an exponent equation,
think about it this way. The left side asks: “3 to what power is 1

3
?” And

the right side answers: “3 to the −1power is 1
3

.” 3−1 = 1
3

.

These two equations, log3
1
3 = −1and 3−1 = 1

3 , are two different
ways of expressing the same numerical relationship.



The Logarithm Defined as an Inverse Function
This module discusses how logarithms can be defined as inverse functions.

√x can be defined as the inverse function of x2. Recall the definition of
an inverse function—
f −1(x) is defined as the inverse of f 1(x) if it
reverses the inputs and outputs. So we can demonstrate this inverse
relationship as follows:

√x is the inverse function of x2

3 → x2 → 9

9 → √x → 3

Similarly, log2x is the inverse function of the exponential function 2x.

log2x is the inverse function of 2x

3 → 2x → 8

8 → log2x → 2

(You may recall that during the discussion of inverse functions, 2x was the
only function you were given that you could not find the inverse of. Now
you know!)



In fact, as we noted in the first chapter, √xis not a perfect inverse of x2,
since it does not work for negative numbers. (−3)2 = 9, but √9 is not −3.
Logarithms have no such limitation: log2x is a perfect inverse for 2x.

The inverse of addition is subtraction. The inverse of multiplication is
division. Why do exponents have two completely different kinds of
inverses, roots and logarithms? Because exponents do not commute. 32

and 23 are not the same number. So the question “what number squared
equals 10?” and the question “2 to what power equals 10?” are different
questions, which we express as √10 and log210, respectively, and they
have different answers. x2 and 2x are not the same function, and they
therefore have different inverse functions √x and log210.



Properties of Logarithms
This module contains some of the properties of logarithms and how they
can be used for manipulation.

Just as there are three fundamental laws of exponents, there are three
fundamental laws of logarithms.
Equation:

logx(ab) = logxa + logxb

Equation:

logx

a

b
= logxa − logxb

Equation:

logx(a
b) = blogxa

As always, these algebraic generalizations hold for any a, b, and x.

Example:
Properties of Logarithms

1. Suppose you are given these two facts:

log45 = 1.16
log410 = 1.66

2. Then we can use the laws of logarithms to conclude that:

log4(50) = log45 + log410 = 2.82
log4(2) = log410 − log45 = 0.5
log4(100,000) = 5log410 = 8.3



Note:All three of these results can be found quickly, and without a
calculator. Note that the second result could also be figured out
directly, since
4

1
2 = 2.

These properties of logarithms were very important historically, because
they enabled pre-calculator mathematicians to perform multiplication
(which is very time-consuming and error prone) by doing addition (which
is faster and easier). These rules are still useful in simplifying complicated
expressions and solving equations.

Example:
Solving an equation with the properties of logarithms

log2x − log2(x − 1) = 5 The problem

log2(
x

x−1 ) = 5 Second property of logarithms

x

x−1 = 25 = 32
Rewrite the log as an exponent. (2-
to-what is?
 x

x−1

2-to-the-5!)

x = 32(x − 1)
Multiply. We now have an easy
equation to solve.

x = 32x − 32



−31x = −32

x = 32
31

Proving the Properties of Logarithms

If you understand what an exponent is, you can very quickly see why the
three rules of exponents work. But why do logarithms have these three
properties?

As you work through the text, you will demonstrate these rules intuitively,
by viewing the logarithm as a counter. (
log28 asks “how many 2s do I
need to multiply, in order to get 8?”) However, these rules can also be
rigorously proven, using the laws of exponents as our starting place.

Proving the First Law of Logarithms, logx(ab) = logxa + logxb

m = logxa
I’m just inventing m
to represent
this log

xm = a

Rewriting the above expression as an
exponent. (
logxa
asks “
x
to what
power is a
?” And the equation
answers: “
x
to the m
is a
.”)

n = logxb
Similarly, n
will represent the other
log.

xn = b



logx(ab) = logx(xmxn)
Replacing a
and b
based on the
previous equations

= logx(xm+n)

This is the key step! It uses the first
law of exponents. Thus you can see
that the properties of logarithms
come directly from the laws of
exponents.

= m + n

= logx(xm+n)
asks the question: “
x
to what power is xm+n
?” Looked at
this way, the answer is obviously
(m + n)
. Hence, you can see how
the logarithm and exponential
functions cancel each other out, as
inverse functions must.

= logxa + logxb

Replacing m
and n
with what they
were originally defined as. Hence, we
have proven what we set out to
prove.

To test your understanding, try proving the second law of logarithms: the
proof is very similar to the first. For the third law, you need invent only one
variable, m = logxa. In each case, you will rely on a different one of the
three rules of exponents, showing how each exponent law corresponds to
one of the logarithms laws.



Common Logarithms
This module covers some of the logarithms commonly encountered in
algebra.

When you see a root without a number in it, it is assumed to be a square
root. That is, √25is a shorthand way of writing 2√25. This rule is employed
because square roots are more common than other types.

When you see a logarithm without a number in it, it is assumed to be a base
10 logarithm. That is, log(1000) is a shorthand way of writing log10(1000)
. A base 10 logarithm is also known as a “common” log.

Why are common logs particularly useful? Well, what is log10(1000)? By
now you know that this asks the question “10 to what power is 1000?” The
answer is 3. Similarly, you can confirm that:
Equation:

log(10) = 1

Equation:

log(100) = 2

Equation:

log(1,000,000) = 6

We can also follow this pattern backward:
Equation:

log(1) = 0

Equation:

log(
1

10
) = −1

Equation:

( )



log(
1

100
) = −2

and so on. In other words, the common log tells you the order of
magnitude of a number: how many zeros it has. Of course, log10(500) is
difficult to determine exactly without a calculator, but we can say
immediately that it must be somewhere between 2 and 3, since 500 is
between 100 and 1000.



Graphing Logarithmic Functions
This module discusses the graphing and plotting of logarithmic functions
and some of their applications.

Suppose you want to graph the function y = log2(x). You might start by
making a table that looks something like this:

x y = log2(x)

1 0

2 1

3 um....I’m not sure

4 2

5 can I use a calculator?

This doesn’t seem to be the right strategy. Many of those numbers are just
too hard to work with.

So, you start looking for numbers that are easy to work with. And you
remember that it’s important to look at numbers that are less than 1, as well
as greater. And eventually, you end up with something more like this.

x y = log2(x)



x y = log2(x)

1
8 −3

1
4 −2

1
2 −1

1 0

2 1

4 2

8 3

As long as you keep putting powers of 2 in the x column, the y column is
very easy to figure.

In fact, the easiest way to generate this table is to recognize that it is the
table of y = 2x values, only with the x and y coordinates switched! In other
words, we have re-discovered what we already knew: that y = 2x and
y = log2(x) are inverse functions.

When you graph it, you end up with something like this:

y = log2(x)



As always, you can learn a great deal about the log function by reading the
graph.

The domain is x > 0. (You can’t take the log of 0 or a negative
number—do you remember why?).
The range, on the other hand, is all numbers. Of course, all this
inverses the function 2x, which has a domain of all numbers and a
range of y > 0.
As x gets closer and closer to 0, the function dives down to smaller
and smaller negative numbers. So the y-axis serves as an “asymptote”
for the graph, meaning a line that the graph approaches closer and
closer to without ever touching.
As x moves to the right, the graph grows—but more and more slowly.
As x goes from 4 to 8, the graph goes up by 1. As x goes from 8 to 16,
the graph goes up by another 1. It doesn’t make it up another 1 until x
reaches 32...and so on.

This pattern of slower and slower growth is one of the most important
characteristics of the log. It can be used to “slow down” functions that have
too wide a range to be practical to work with.

Example:
Using the log to model a real world problem
Lewis Fry Richardson (1881–1953) was a British meteorologist and
mathematician. He was also an active Quaker and committed pacifist, and
was one of the first men to apply statistics to the study of human conflict.
Richardson catalogued 315 wars between 1820 and 1950, and categorized
them by how many deaths they caused. At one end of the scale is a deadly
quarrel, which might result in 1 or 2 deaths. At the other extreme are World
War I and World War II, which are responsible for roughly 10 million
deaths each.



As you can see from the chart above, working with these numbers is
extremely difficult: on a scale from 0 to 10 Million, there is no visible
difference between (say) 1 and 100,000. Richardson solved this problem
by taking the common log of the number of deaths. So a conflict with
1,000 deaths is given a magnitude of log(1000) = 3. On this scale, which
is now the standard for conflict measurement, the magnitudes of all wars
can be easily represented.

Richardson’s scale makes it practical to chart, discuss, and compare wars
and battles from the smallest to the biggest. For instance, he discovered
that each time you move up by one on the scale—that is, each time the
number of deaths multiplies by 10—the number of conflicts drops in a
third. (So there are roughly three times as many “magnitude 5” wars as
“magnitude 6,” and so on.)
The log is useful here because the logarithm function itself grows so
slowly that it compresses the entire 1-to-10,000,000 range into a 0-to-7
scale. As you will see in the text, the same trick is used—for the same
reason—in fields ranging from earthquakes to sound waves.



Rational Expression Concepts
This module provides an introduction to rational expressions.

The term “rational” in math is not used in the sense of “sane” or “sensible.”
It is instead used to imply a ratio, or fraction. A rational expression is the
ratio of two polynomials: for instance, x

x
 is a rational expression.

There are two rules for working with rational expressions.

1. Begin every problem by factoring everything you can.
2. Remember that, despite all the complicated looking functions, a

rational expression is just a fraction: you manipulate them using all the
rules of fractions that you are familiar with.



Simplifying Rational Expressions
This module provides techniques for simplifying rational expressions.

How do you simplify a fraction? The answer is, you divide the top and
bottom by the same thing.
Equation:

4

6
=

4 ÷ 2

6 ÷ 2
=

2

3

So 4
6

 and 2
3

 are two different ways of writing the same number.

On the left, a pizza divided into six equal slices: the four
shaded-in regions represent 4

6
 of a pizza. On the right, a

pizza divided into three equal slices: the two shaded-in
regions represent 2

3  of a pizza. The two areas are identical:
4
6

 and 2
3

 are two different ways of expressing the same
amount of pizza.

In some cases, you have to repeat this process more than once before the
fraction is fully simplified.
Equation:

40

48
=

40 ÷ 4

48 ÷ 4
=

10

12
=

10 ÷ 2

12 ÷ 2
=

5

6

It is vital to remember that we have not divided this fraction by 4, or by
2, or by 8. We have rewritten the fraction in another form: 40

48
 is the same

number as 5
6 . In strictly practical terms, if you are given the choice



between 40
48

 of a pizza or 5
6

 of a pizza, it does not matter which one you
choose, because they are the same amount of pizza.

You can divide the top and bottom of a fraction by the same number, but
you cannot subtract the same number from the top and bottom of a fraction!

40
48

= 40−39
48−39

= 1
9


✗
Wrong!

Given the choice, a hungry person would be wise to choose 40
48

 of a pizza
instead of 1

9
.

Dividing the top and bottom of a fraction by the same number leaves the
fraction unchanged, and that is how you simplify fractions. Subtracting the
same number from the top and bottom changes the value of the fraction,
and is therefore an illegal simplification.

All this is review. But if you understand these basic fraction concepts, you
are ahead of many Algebra II students! And if you can apply these same
concepts when variables are involved, then you are ready to simplify
rational expressions, because there are no new concepts involved.

As an example, consider the following:
Equation:

x
2 − 9

x
2 + 6x + 9

You might at first be tempted to cancel the common x2 terms on the top and
bottom. But this would be, mathematically, subtracting x2 from both the
top and the bottom; which, as we have seen, is an illegal fraction operation.



x
2−9

x
2+6x+9

= −9
6x+9

✗
Wrong!

To properly simplify this expression, begin by factoring both the top and the
bottom, and then see if anything cancels.

Example:
Simplifying Rational Expressions

x
2−9

x
2+6x+9 The problem

=
(x+3)(x−3)

(x+3)2

Always begin rational expression problems by
factoring! This factors easily, thanks to
(x + a)(x − a) = x

2 − a
x and

(x + a)2 = x
2 + 2ax + a

2

= x−3
x+3

Cancel a common (x + 3) term on both the top
and the bottom. This is legal because this term
was multiplied on both top and bottom; so we
are effectively dividing the top and bottom by 
(x + 3), which leaves the fraction unchanged.

What we have created, of course, is an algebraic generalization:
Equation:



x
2 − 9

x
2 + 6x + 9

=
x − 3

x + 3

For any x value, the complicated expression on the left will give the same
answer as the much simpler expression on the right. You may want to try
one or two values, just to confirm that it works.

As you can see, the skills of factoring and simplifying fractions come
together in this exercise. No new skills are required.



Multiplying Rational Expressions
This module covers the multiplication of rational expressions.

Multiplying fractions is easy: you just multiply the tops, and multiply the
bottoms. For instance,
Equation:

6

7
×

7

11
=

6 × 7

7 × 11
=

42

77

Now, you may notice that 42
77

 can be simplified, since 7 goes into the top
and bottom. 42

77
= 42÷7

77÷7
= 6

11
. So 42

77
 is the correct answer, but 6

11
 is also

the correct answer (since they are the same number), and it’s a good bit
simpler.

In fact, we could have jumped straight to the simplest answer first, and
avoided dealing with all those big numbers, if we had noticed that we have
a 7 in the numerator and a 7 in the denominator, and cancelled them before
we even multiplied!

This is a great time-saver, and you’re also a lot less likely to make mistakes.

When multiplying fractions...
If the same number appears on the top and the bottom, you can cancel it
before you multiply. This works regardless of whether the numbers appear
in the same fraction or different fractions.

But it’s critical to remember that this rule only applies when you are
multiplying fractions: not when you are adding, subtracting, or dividing.

As you might guess, all this review of basic fractions is useful because,
once again, rational expressions work the same way.



Example:
Multiplying Rational Expressions

3x2−21x−24
x

2−16
⋅ x

2−6x+8
3x+3 The problem

=
3(x−8)(x+1)

(x+4)(x−4)
⋅

(x−2)(x−4)

3(x+1)

Always begin rational expression
problems by factoring! Note that
for the first element you begin by
factoring out the common 3, and
then factoring the remaining
expression.

When multiplying fractions, you
can cancel anything on top with
anything on the bottom, even
across different fractions

=
(x−8)(x−2)

x+4

Now, just see what you’re left
with. Note that you could rewrite
the top as
x2 − 10x + 16
but it’s
generally easier to work with in
factored form.

Dividing Rational Expressions

To divide fractions, you flip the bottom one, and then multiply.
Equation:



1

2
÷

1

3
=

1

2
⋅ 3 =

3

2

After the “flipping” stage, all the considerations are exactly the same as
multiplying.

Example:
Dividing Rational Expressions

x
2−3x

2x2−13x+6

x
3+4x

x
2−12x+36

This problem could also be written as:
x

2−3x

2x2−13x+6
÷ x

3+4x
x

2−12x+36
. However,

the  symbol is rarely seen at this level
of math. 12 ÷ 4 is written as 12

4 .

x
2−3x

2x2−13x+6
× x

2−12x+36
x

3+4x

Flip the bottom and multiply. From
here, it’s a straight multiplication
problem.

=
x(x−3)

(2x−1)(x−6)
×

(x−6)2

x(x
2+4)

Always begin rational expression
problems by factoring! Now, cancel a
factor of x and an (x − 6) and you
get...

=
(x−3)(x−6)

(2x−1)(x
2+4)

That’s as simple as it gets, I’m afraid.
But it’s better than what we started
with!



Adding and Subtracting Rational Expressions
This module covers the addition and subtraction of rational expressions.

Adding and subtracting fractions is harder—but once again, it is a familiar
process.
Equation:

1

2
+

1

3
=

3

6
+

2

6
=

5

6

The key is finding the least common denominator: the smallest multiple
of both denominators. Then you rewrite the two fractions with this
denominator. Finally, you add the fractions by adding the numerators and
leaving the denominator alone.

But how do you find the least common denominator? Consider this
problem:
Equation:

5

12
+

7

30

You could probably find the least common denominator if you played
around with the numbers long enough. But what I want to show you is a
systematic method for finding least common denominators—a method that
works with rational expressions just as well as it does with numbers. We
start, as usual, by factoring. For each of the denominators, we find all the
prime factors, the prime numbers that multiply to give that number.
Equation:

5

2 ⋅ 2 ⋅ 3
+

7

2 ⋅ 3 ⋅ 5

If you are not familiar with the concept of prime factors, it may take a few
minutes to get used to. 2 × 2 × 3 is 12, broken into its prime factors: that



is, it is the list of prime numbers that multiply to give 12. Similarly, the
prime factors of 30 are 2 × 3 × 5.

Why does that help? Because 12 = 2 × 2 × 3, any number whose prime
factors include two 2s and one 3 will be a multiple of 12. Similarly, any
number whose prime factors include a 2, a 3, and a 5 will be a multiple of
30.

The least common denominator is the smallest number that meets both
these criteria: it must have two 2s, one 3, and one 5. Hence, the least
common denominator must be 2 × 2 × 3 × 5, and we can finish the
problem like this.
Equation:

5

2 ⋅ 2 ⋅ 3
+

7

2 ⋅ 3 ⋅ 5
=

55–
(2 ⋅ 2 ⋅ 3)5–

+
72–

(2 ⋅ 3 ⋅ 5)2–
=

25

60
+

14

60
=

39

60

This may look like a very strange way of solving problems that you’ve
known how to solve since the third grade. However, I would urge you to
spend a few minutes carefully following that solution, focusing on the
question: why is 2 × 2 × 3 × 5 guaranteed to be the least common
denominator? Because once you understand that, you have the key concept
required to add and subtract rational expressions.

Example:
Subtracting Rational Expressions



3
x

2+12x+36
− 4x

x
3+4x2−12x

The problem

= 3
(x+6)2 − 4x

x(x+6)(x−2)

Always begin rational
expression problems by
factoring! The least common
denominator must have two
(x + 6)
s, one x
, and one
(x − 2)
.

=
3(x)(x−2)

(x+6)2(x)(x−2)
−

4x(x+6)

x(x+6)2(x−2)
Rewrite both fractions with
the common denominator.

=
3(x)(x−2)−4x(x+6)

x(x−2)(x+6)2

Subtracting fractions is easy
when you have a common
denominator! It’s best to
leave the bottom alone, since
it is factored. The top,
however, consists of two
separate factored pieces, and
will be simpler if we multiply
them out so we can combine
them.

=
3x2−6x−(4x2+24x)

x(x−2)(x+6)2

A common student mistake
here is forgetting the
parentheses. The entire
second term is subtracted;
without the parentheses, the
24x
ends up being added.

= −x
2−30x

x(x−2)(x+6)2

Almost done! But finally, we
note that we can factor the
top again. If we factor out an
x
it will cancel with the x
in
the denominator.



= −x−30
(x−2)(x+6)2 A lot simpler than where we

started, isn’t it?

The problem is long, and the math is complicated. So after following all the
steps, it’s worth stepping back to realize that even this problem results
simply from the two rules we started with.

First, always factor rational expressions before doing anything else.

Second, follow the regular processes for fractions: in this case, the
procedure for subtracting fractions, which involves finding a common
denominator. After that, you subtract the numerators while leaving the
denominator alone, and then simplify.



Rational Equations
This module introduces rational expressions in equations.

Rational Equations

A rational equation means that you are setting two rational expressions
equal to each other. The goal is to solve for x; that is, find the x value(s) that
make the equation true.

Suppose I told you that:
Equation:

x

8
=

3

8

If you think about it, the x in this equation has to be a 3. That is to say, if
x=3 then this equation is true; for any other x value, this equation is false.

This leads us to a very general rule.

A very general rule about rational equations

If you have a rational equation where the denominators are the same, then
the numerators must be the same.

This in turn suggests a strategy: find a common denominator, and then set
the numerators equal.

Example: Rational Equation



Example: Rational Equation

3
x

2+12x+36
= 4x

x
3+4x2−12x

Same problem we worked
before, but now we are equating
these two fractions, instead of
subtracting them.

3(x)(x−2)

(x+6)2(x)(x−2)
=

4x(x+6)

x(x+6)2(x−2)
Rewrite both fractions with the
common denominator.

3x(x − 2) = 4x(x + 6)

Based on the rule above—since
the denominators are equal, we
can now assume the numerators
are equal.

3x
2– 6 x= 4x

2 + 24x Multiply it out

x
2 + 30x = 0

What we’re dealing with, in this
case, is a quadratic equation. As
always, move everything to one
side...

x(x + 30) = 0

...and then factor. A common
mistake in this kind of problem
is to divide both sides by x; this
loses one of the two solutions.

x=0 or x=−30

Two solutions to the quadratic
equation. However, in this case, 
x = 0 is not valid, since it was
not in the domain of the original
right-hand fraction. (Why?) So
this problem actually has only
one solution, x =– 30.



As always, it is vital to remember what we have found here. We started with
the equation 3

x
2+12x+36

= 4x

x
3+4x2−12x

. We have concluded now that if you
plug x =– 30 into that equation, you will get a true equation (you can verify
this on your calculator). For any other value, this equation will evaluate
false.

To put it another way: if you graphed the functions 3
x

2+12x+36
 and

4x

x
3+4x2−12x

, the two graphs would intersect at one point only: the point
when x =– 30.



Rational Expression Concepts -- Dividing Polynomials

Simplifying, multiplying, dividing, adding, and subtracting rational
expressions are all based on the basic skills of working with fractions.
Dividing polynomials is based on an even earlier skill, one that pretty much
everyone remembers with horror: long division.

To refresh your memory, try dividing 745
3

 by hand. You should end up with
something that looks something like this:

So we conclude that 745
3

 is 248 with a remainder of 1; or, to put it another
way, 745

3
= 248 1

3
.

You may have decided years ago that you could forget this skill, since
calculators will do it for you. But now it comes roaring back, because here
is a problem that your calculator will not solve for you: 6x3−8x2+4x−2

2x−4 . You
can solve this problem in much the same way as the previous problem.

Example:

6x3−8x2+4x−2
2x−4 The problem



Polynomial Division

The problem, written in standard long division
form.

Why 3x
2? This comes from the question: “How

many times does 2x go into 6x
3?” Or, to put

the same question another way: “What would I
multiply 2x by, in order to get 6x

3?” This is
comparable to the first step in our long division
problem: “What do I multiply 3 by, to get 7?”

Now, multiply the 3x
2 times the (2x– 4) and

you get 6x
3– 12x

2. Then subtract this from the
line above it. The 6x

3 terms cancel—that shows
we picked the right term above! Note that you
have to be careful with signs here.
–8x

2– (–12x
2) gives us positive 4x

2.

Bring down the 4x. We have now gone through
all four steps of long division—divide, multiply,
subtract, and bring down. At this point, the
process begins again, with the question “How
many times does 2x go into 4x

2?”

This is not the next step...this is what the
process looks like after you’ve finished all the
steps. You should try going through it yourself
to make sure it ends up like this.

So we conclude that 6x3−8x2+4x−2
2x−4  is 3x2 + 2x + 6 with a remainder of 22,

or, to put it another way, 3x2 + 2x + 6 + 22
2x−4 .



Checking your answers

As always, checking your answers is not just a matter of catching careless
errors: it is a way of making sure that you know what you have come up
with. There are two different ways to check the answer to a division
problem, and both provide valuable insight

The first is by plugging in numbers. We have created an algebraic
generalization:
Equation:

6x3 − 8x2 + 4x − 2

2x − 4
= 3x2 + 2x + 6 +

22

2x − 4

In order to be valid, this generalization must hold for x = 3, x = −4,
x = 0, x = ϖ,or any other value except x = 2 (which is outside the
domain). Let’s try x = 3.

Checking the answer by plugging in x = 3
Equation:

6(3)3 − 8(3)2 + 4(3) − 2

2(3) − 4

?

= 3(3)
2

+ 2(3) + 6 +
22

2(3) − 4

Equation:

162 − 72 + 12 − 2

6 − 4

?

= 27 + 6 + 6 +
22

6 − 4

Equation:

100

2

?

= 39 +
22

2

Equation:

50
?

= 39 + 11✓



The second method is by multiplying back. Remember what division is: it is
the opposite of multiplication! If 745

3
 is 248 with a remainder of 1, that

means that 248 ⋅ 3 will be 745, with 1 left over. Similarly, if our long
division was correct, then (3x2 + 2x + 6)(2x − 4) + 22 should be

6x3 − 8x2 + 4x − 2.

Checking the answer by multiplying back
Equation:

(3x2 + 2x + 6)(2x − 4) + 22

Equation:

= (6x3 − 12x
2 + 4x2 − 8x − 24) + 22

Equation:

= 6x3 − 8x2 + 4x − 2✓



Radical Concepts
This module provides an introduction to radical numbers.

The concept of a radical (or root) is a familiar one, and was reviewed in the
conceptual explanation of logarithms in the previous chapter. In this
chapter, we are going to explore some possibly unfamiliar properties of
radicals, and solve equations involving radicals.



Radical Concepts -- Properties of Radicals

What is √x2 + 9? Many students will answer quickly that the answer is 
(x + 3) and have a very difficult time believing this answer is wrong. But it
is wrong.

√x2 is x* 
[footnote] and √9 is 3, but √x2 + 9 is not (x + 3).
I’m fudging a bit here: √x2 is x only if you ignore negative numbers. For
instance, if x = –3, then x2 = 9, and √x2 is 3; so in that case, √x2 is not 
x. In general, √x2 = |x|. However, this subtlety is not relevant to the
overall point, which is that you cannot break up two terms that are added
under a radical.

Why not? Remember that √x2 + 9 is asking a question: “what squared
gives the answer x2 + 9 ?” So (x + 3) is not an answer, because 
(x + 3)2 = x2 + 6x+9, not x2 + 9 .

As an example, suppose x = 4. So √x2 + 9 = √42 + 9 = √25 = 5. But
(x + 3) = 7.

Note:If two numbers are added or subtracted under a square root, you
cannot split them up. In symbols: √a + b ≠ √a + √b or, to put it another
way, √x2 + y2 ≠ a + b

√x2 + 9 cannot, in fact, be simplified at all. It is a perfectly valid function,
but cannot be rewritten in a simpler form.

How about √9x2 ? By analogy to the previous discussion, you might
expect that this cannot be simplified either. But in fact, it can be simplified:

√9x2 = 3x



Why? Again, √9x2 is asking “what squared gives the answer 9x2 ?” The
answer is 3x because (3x)2 = 9x2.

Similarly, √ 9
x2 = 3

x
, because ( 3

x
)

2
= 9

x2 .

Note:If two numbers are multiplied or divided under a square root, you
can split them up. In symbols: √ab = √a√b, √ a

b
=

√a

√b



Simplifying Radicals
This module covers techniques for the simplification of radicals.

Simplifying Radicals

The property √ab=
√a√b can be used to simplify radicals. The key is to
break the number inside the root into two factors, one of which is a perfect
square.

Example:
Simplifying a Radical

√75

=
√25 ∙ 3 because 25•3 is 75, and 25 is a perfect square

=
√25√3 because √ab
=
√a
√b

= 5
√3 because √25	=5

So we conclude that √75=5
√3. You can confirm this on your calculator
(both are approximately 8.66).

We rewrote 75 as 25 ∙ 3 because 25 is a perfect square. We could, of
course, also rewrite 75 as 5 ∙ 15, but—although correct—that would not
help us simplify, because neither number is a perfect square.



Example:
Simplifying a Radical in Two Steps

√180

=
√9∙20 because 9 ∙ 20 is 180, and 9 is a perfect square

=
√9	√20 because √ab
=
√a
√b

= 3
√20 So far, so good. But wait! We’re not done!

= 3
√4∙5 There’s another perfect square to pull out!

= 3
√4√5

= 3(2)
√5

= 6
√5 Now we’re done.

The moral of this second example is that after
you simplify, you should
always look to see if you can simplify again
.

A secondary moral is, try to pull out the biggest perfect square you can. We
could have jumped straight to the answer if we had begun by rewriting 180
as 36 ∙ 5.

This sort of simplification can sometimes allow you to combine radical
terms, as in this example:



Example:
Combining Radicals

√75
–
√12

= 5
√3
–2
√3

We found earlier that √75
= 5
√3
. Use the same
method to confirm that √12
= 2
√3
.

= 3
√3

5 of anything minus 2 of that same thing is 3 of it,
right?

That last step may take a bit of thought. It can only be used when the
radical is the same. Hence, √2
+
√3
cannot be simplified at all. We
were able to simplify √75
–
√12
only by making the radical in both
cases the same
.

So why does 5
√3–2
√3= 3
√3? It may be simplest to think about
verbally: 5 of these things, minus 2 of the same things, is 3 of them. But
you can look at it more formally as a factoring problem, if you see a
common factor of √3.

5
√3–2
√3 = √3(5– 2) = √3(3).

Of course, the process is exactly the same if variable are involved instead of
just numbers!



Example:
Combining Radicals with Variables

x
3
2 + x

5
2

= x3 + x5 Remember the definition of fractional
exponents!

= √x2*x + √x4*x
As always, we simplify radicals by
factoring them inside the root...

√x2*√x + √x4*√x and then breaking them up...

= x√x + x2√x and then taking square roots outside!

= (x2 + x)√x
Now that the radical is the same, we
can combine.

Rationalizing the Denominator

It is always possible to express a fraction with no square roots in the
denominator.

Is it always desirable? Some texts are religious about this point: “You
should never have a square root in the denominator.” I have absolutely no
idea why. To me, 1

√2
 looks simpler than √2

2
; I see no overwhelming reason

for forbidding the first or preferring the second.



However, there are times when it is useful to remove the radicals from the
denominator: for instance, when adding fractions. The trick for doing this is
based on the basic rule of fractions: if you multiply the top and bottom of
a fraction by the same number, the fraction is unchanged. This rule
enables us to say, for instance, that 2

3  is exactly the same number as 2⋅3
3⋅3 =
 6

9

.

In a case like 1
√2

, therefore, you can multiply the top and bottom by √2.

1
√2

 = 1*2
√2*√2

 = √2
2

What about a more complicated case, such as √12

1+√3
? You might think we

could simplify this by multiplying the top and bottom by (1+
√3), but that
doesn’t work: the bottom turns into (1 + 3)2
= 1 + 2
√3+3, which is at
least as ugly as what we had before.

The correct trick for getting rid of (1+
√3) is to multiply it by (1–
√3).
These two expressions, identical except for the replacement of a+ by a-,
are known as conjugates. What happens when we multiply them? We don’t
need to use FOIL if we remember that

(x + y)(x − y) = x2 − y2

Using this formula, we see that

(1 + √3)(1 − √3) = 12 − (√3)
2

= 1 − 3 = −2

So the square root does indeed go away. We can use this to simplify the
original expression as follows.

Example:
Rationalizing Using the Conjugate of the Denominator



√12

1+√3
=

√12(1−√3)

(1+√3)(1−√3)
=

√12−√36
1−3 = 2√3−6

−2 = −√3 + 3

As always, you may want to check this on your calculator. Both the original
and the simplified expression are approximately 1.268.

Of course, the process is the same when variables are involved.

Example:
Rationalizing with Variables

1
x−√x

 = 1(x+√x)

(x−√x)(x+√x)
 = x+√x

x2−x

Once again, we multiplied the top and the bottom by the conjugate of the
denominator: that is, we replaced a- with a+. The formula 
(x + a)(x − a) = x2 − a2 enabled us to quickly multiply the terms on the
bottom, and eliminated the square roots in the denominator.



Radical Equations
This module contains methods on solving radical equations.

When solving equations that involve radicals, begin by asking yourself: is there
an x under the square root? The answer to this question will determine the way
you approach the problem.

If there is not an x under the square root—if only numbers are under the radicals—
you can solve much the same way you would solve with no radicals at all.

Example:
Radical Equation with No Variables Under Square Roots

√2x + 5 = 7–√3x Sample problem: no variables under radicals

√2 +√3x = 7 − 5
Get everything with an x on one side, everything
else on the other

x(√2 +√3) = 2 Factor out the x

x = 2
√2+√3 Divide, to solve for x

The key thing to note about such problems is that you do not have to square both
sides of the equation. √2 may look ugly, but it is just a number—you could find it
on your calculator if you wanted to—it functions in the equation just the way that
the number 10, or 1

3
, or π would.

If there is an x under the square root, the problem is completely different. You will
have to square both sides to get rid of the radical. However, there are two important
notes about this kind of problem.



1. Always get the radical alone, on one side of the equation, before squaring.
2. Squaring both sides can introduce false answers—so it is important to check

your answers after solving!

Both of these principles are demonstrated in the following example.

Example:
Radical Equation with Variables under Square Roots

√x + 2 + 3x = 5x + 1 Sample problem with variables under radicals

√x + 2 = 2x + 1 Isolate the radical before squaring!

x + 2 = (2x + 1)2 Now, square both sides

x + 2 = 4x2 + 4x + 1
Multiply out. Hey, it looks like a quadratic
equation now!

x + 2 = 4x2 + 4x + 1
As always with quadratics, get everything on
one side.

(4x − 1)(x + 1) = 0
Factoring: the easiest way to solve quadratic
equations.

x = 1
4  or x = −1 Two solutions. Do they work? Check in the

original equation!

Check x = 1
4 Check x = –1



√ 1
4 + 2 + 3( 1

4 )
?
= 5( 1

4 )+ 1 √−1 + 2 + 3(−1)
?
= 5(−1)+ 1

√ 1
4 + 8

4 + 3
4

?
= 5

4 + 1 √1 − 3
?
= −5 + 1

√ 9
4 + 3

4

?
= 5

4 + 4
4 1 − 3

?
= −5 + 1

3
2 + 3

4

?
= 5

4 + 4
4

−2 = −4 Not equal!

9
4 = 9

4

So the algebra yielded two solutions: 14  and –1. Checking, however, we discover
that only the first solution is valid. This problem demonstrates how important it is
to check solutions whenever squaring both sides of an equation.

If variables under the radical occur more than once, you will have to go through
this procedure multiple times. Each time, you isolate a radical and then square both
sides.

Example:
Radical Equation with Variables under Square Roots Multiple Times

√x + 7 − x=1
Sample problem with variables under radicals
multiple times

√x + 7 = √x + 1
Isolate one radical. (I usually prefer to start
with the bigger one.)



x + 7 = x + 2√x + 1 Square both sides. The two-radical equation is
now a one-radical equation.

6 = 2√x

3 = x
Isolate the remaining radical, then square both
sides again..

9 = x
In this case, we end up with only one solution.
But we still need to check it.

Check x=9

√9 + 7 −√9
?
= 1

√16 −√9
?
= 1

4 − 3 = 1

Remember, the key to this problem was recognizing that variables under the
radical occurred in the original problem two times. That cued us that we would
have to go through the process—isolate a radical, then square both sides—twice,
before we could solve for x. And whenever you square both sides of the equation,
it’s vital to check your answer(s)!

When good math leads to bad answers

Why is it that—when squaring both sides of an equation—perfectly good algebra
can lead to invalid solutions? The answer is in the redundancy of squaring.
Consider the following equation:



–5 = 5 False. But square both sides, and we get...

25 = 25 True. So squaring both sides of a false equation can produce a true
equation.

To see how this affects our equations, try plugging x = -1 into the various steps of
the first example.

Example:
Why did we get a false answer of x=–1 in Example 1?

√x + 2 + 3x = 5x + 1 Does x = -1 work here? No, it does not.

√x + 2 = 2x + 1
How about here? No, x = -1 produces the
false equation 1=–1.

x + 2 = (2x + 1)2 Suddenly, x = -1 works. (Try it!)

When we squared both sides, we “lost” the difference between 1 and –1, and they
“became equal.” From here on, when we solved, we ended up with x = -1 as a
valid solution.

Test your memory: When you square both sides of an equation, you can introduce
false answers. We have encountered one other situation where good algebra can
lead to a bad answer. When was it?

Answer: It was during the study of absolute value equations, such as 
|2x + 3| = -11x + 42. In those equations, we also found the hard-and-fast rule
that you must check your answers as the last step.

What do these two types of problem have in common? The function |x| actually
has a lot in common with x2. Both of them have the peculiar property that they



always turn -a and a into the same response. (For instance, if you plug –3 and 3
into the function, you get the same thing back.) This property is known as being an
even function. Dealing with such “redundant” functions leads, in both cases, to the
possibility of false answers.

The similarity between these two functions can also be seen in the graphs: although
certainly not identical, they bear a striking resemblance to each other. In particular,
both graphs are symmetric about the y-axis, which is the fingerprint of an “even
function”.



Imaginary Numbers Concepts
This module introduces i, the imaginary number, and the concept of
complex numbers in Algebra.

(-1)2 = 1

12 = 1

Whether you square a positive or a negative number, the answer is positive.
It is impossible to square any number and get a negative answer.

So what is √−1? Since it asks the question “What number squared is –
1?”, and since nothing squared ever gives the answer –1, we say that the
question has no answer. More generally, we say that the domain of √x is all
numbers x such that x ≥ 0. –1 is not in the domain.

However, it turns out that for a certain class of problems, it is useful to
define a new kind of number that has the peculiar property that when you
square them, you do get negative answers.

Definition of i
The definition of the imaginary number i is that it is the square root of –1:

i =
√−1 or, equivalently, i2 + −1

i is referred to as an “imaginary number” because it cannot represent real
quantities such as “the number of rocks” or “the length of a stick.”
However, surprisingly, imaginary numbers can be useful in solving many
real world problems!

I often like to think of x as being like a science fiction story. Many science
fiction stories are created by starting with one false premise, such as “time
travel is possible” or “there are men on Mars,” and then following that
premise logically to see where it would lead. With imaginary numbers, we
start with the premise that “a number exists whose square is –1.” We then
follow that premise logically, using all the established rules of math, to see
where it leads.



" "The imaginary number is a fine and wonderful resource of the
human spirit, almost an amphibian between being and not being.""
"-
Gottfried Wilhelm Leibniz"



Playing with i
This module contains some example problems involving the manipulation i, the imaginary
number.

Let’s begin with a few very simple exercises designed to show how we apply the normal
rules of algebra to this new, abnormal number.

A few very simple examples of expressions involving i

Simplify: i ∙ 5

Answer: 5i

Simplify: i + 5i

Answer: 6i (Add anything to 5 of itself, and you get 6 of it. Or, you can think of
this as “pulling out” an i as follows: i + 5i = i(1 + 5) = 6i)

Simplify: 2i + 3

Answer: You can't simplify it.

Now let's try something a little more involved.

Example: Simplify the expression (3+2i)2

(3 + 2i)2 = 32 + 2(3)(2i) + (2i)2 because(x + a)2 = x2 + 2ax + a2as
always

= 9 + 12i– 4 (2i)2 = (2i)(2i) = (2)(2)(i)(i) = 4i2 = –4

= 5 + 12i
we can combine the 9 and –4, but not the 
12i.



It is vital to remember that i is not a variable, and this is not an algebraic generalization. You
cannot plug i = 3 into that equation and expect anything valid to come out. The equation 
(3+2i)2 = 5 + 12i has been shown to be true for only one number: that number is i, the
square root of –1.

In the next example, we simplify a radical using exactly the same technique that we used
in the unit on radicals, except that a– 1 is thrown into the picture.

Example: Simplify √−20

√−20 = √(4)(5)(−1) as always, factor out the perfect squares

= √4√5√−1 then split it, because√ab=
√a√b

= 2i
√5 √4=2, √−1= i, and√5is just√5

Check

Is 2i
√5 really the square root of –20? If it is, then when we square it, we should get –
20.

(2i√5)
2

= 22
i

252 = 4*−1*5 = −20

It works!

The problem above has a very important consequence. We began by saying “You can’t take
the square root of any negative number.” Then we defined i as the square root of –1. But we
see that, using i, we can now take the square root of any negative number.



Complex Numbers
This module introduces the concept of complex numbers in Algebra.

A “complex number” is the sum of two parts: a real number by itself, and a
real number multiplied by i. It can therefore be written as a + bi, where a
and b are real numbers.

The first part, a, is referred to as the real part. The second part, bi, is
referred to as the imaginary part.

Examples of complex numbers a + bi (a is the “real part”; bi is
the “imaginary part”)

3 + 2i a = 3, b = 2

π a = π, b = 0(no imaginary part: a “pure real number”)

−i a = 0, b = −1 (no real part: a “pure imaginary number”)

Some numbers are not obviously in the form a + bi. However, any number
can be put in this form.

Example 1: Putting a fraction into a + bi form (i in the
numerator)

3−4i
5

 is a valid complex number. But it is not in the form a + bi, and
we cannot immediately see what the real and imaginary parts are.



Example 1: Putting a fraction into a + bi form (i in the
numerator)

To see the parts, we rewrite it like this:

3−4i
5

=
 3
5

–
 4
5

i

Why does that work? It’s just the ordinary rules of fractions, applied
backward. (Try multiplying and then subtracting on the right to
confirm this.) But now we have a form we can use:

3−4i
5

 a =
 3
5

, b =– 4
5

So we see that fractions are very easy to break up, if the i is in the
numerator. An i in the denominator is a bit trickier to deal with.

Example 2: Putting a fraction into a + bi form (i in the
denominator)

1
i

 =
1⋅i
i⋅i

Multiplying the top and bottom of a fraction by the
same number never changes the value of the fraction:
it just rewrites it in a different form.

= i

−1 Because i ∙ i is i2, or –1.

= -i
This is not a property of i, but of –1. Similarly, 5

−1  
= –5.



Example 2: Putting a fraction into a + bi form (i in the
denominator)

1
i

: 
a = 0, 
b = −1

since we rewrote it as -i, or 0 − 1i

Finally, what if the denominator is a more complicated complex number?
The trick in this case is similar to the trick we used for rationalizing the
denominator: we multiply by a quantity known as the complex conjugate
of the denominator.

Definition of Complex Conjugate
The complex conjugate of the number a + bi is a − bi. In words, you leave
the real part alone, and change the sign of the imaginary part.

Here is how we can use the “complex conjugate” to simplify a fraction.

Example: Using the Complex Conjugate to put a fraction into 
a + bi form

5
3−4i

The fraction: a complex number not currently in
the form a + bi

=

5(3+4i)

(3−4i)(3+4i)

Multiply the top and bottom by the complex
conjugate of the denominator

=
 15+20i

32−(4i)2 Remember, (x + a)(x– a) = x
2–a2



Example: Using the Complex Conjugate to put a fraction into 
a + bi form

=
 15+20i

9+16
(4i)2 = 42

i
2 = 16(–1) = –16, which we are

subtracting from 9

=
 15+20i

25
Success! The top has i, but the bottom doesn’t.
This is easy to deal with.

=
 15
25 +


20i

25

Break the fraction up, just as we did in a previous
example.

=
 3
5

+
 4
5

i So we’re there! a =
 3
5

 and
b = 4
5

Any number of any kind can be written as a + bi. The above examples
show how to rewrite fractions in this form. In the text, you go through a
worksheet designed to rewrite 3√−1 as three different complex numbers.
Once you understand this exercise, you can rewrite other radicals, such as
√i, in a + bi form.



Imaginary Concepts -- Equality and Inequality in Complex Numbers

What does it mean for two complex numbers to be equal? As always,
equality asserts that two things are exactly the same. 7 + 3i is not equal to
7, or to 3i, or to 7 − 3i, or to 3 + 7i. It is not equal to anything except 
7 + 3i.

Definition of Equality
Two complex numbers are equal to each other only if their real parts are
equal, and their imaginary parts are equal.

So if we say that two complex numbers equal each other, we are actually
making two separate, independent statements. We can use this, for instance,
to solve for two separate variables.

Example: Complex Equality

If 3x + 4yi + 7 = 4x + 8i, what are x and y?

Normally, it is impossible to solve one equation for two unknowns.
But this is really two separate equations!

Real part on the left = real part on the right: 3x + 7 = 4x

Imaginary part on the left = imaginary part on
the right: 4y = 8

We can now solve both of these equations trivially. x = 7, 
y = 2

And what about inequalities? The answer may surprise you: there are no
inequalities with complex numbers, at least not in the form we’re seeing.



The real numbers have the property that for any two real numbers a and b,
exactly one of the following three statements must be true: a = b, a > b, or
a < b. This is one of those properties that seems almost too obvious to
bother with. But it becomes more interesting when you realize that the
complex numbers do not have that property. Consider two simple numbers, 
i and 1. Which of the following is true?

i = 1

i > 1

i < 1

None of them is true. It is not generally possible to describe two complex
numbers as being “greater than” or “less than” each other.

Visually, this corresponds to the fact that all the real numbers can be laid
out on a number line: “greater than” means “to the right of” and so on. The
complex numbers cannot be laid out on a number line. They are sometimes
pictured on a 2-dimensional graph, where the real part is the x coordinate
and the imaginary part is the y coordinate. But one point on a graph is
neither greater than, nor less than, another point!



Quadratic Equations and Complex Numbers
This module looks at quadratic equations with a negative discriminant in
Algebra.

In the unit on quadratic equations and complex numbers, we saw that a
quadratic equation can have two answers, one answer, or no answers.

We can now modify this third case. In cases where we described “no
answers” there are actually two answers, but both are complex! This is easy
to see if you remember that we found “no answers” when the discriminant
was negative—that is, when the quadratic formula gave us a negative
answer in the square root.

As an example, consider the equation:

2x2 + 3x + 5 = 0

The quadratic equation gives us:

x =
−3±√32−4(2)(5)

4  = −3±√−31
4

This is the point where, in the “old days,” we would have given up and
declared “no answer.” Now we can find two answers—both complex.

= −3
4 ±

√31√−1
4  = −3

4 ±
√31

4 i

So we have two answers. Note that the two answers are complex
conjugates of each other—this relationship comes directly from the
quadratic formula.



A Few “Extra for Experts” Thoughts on Imaginary Numbers
This is a module discussing several advanced concepts relating to complex
numbers, including the differences between real and imaginary, and rational
and irrational numbers.

Illegal Operations

So far, we have seen three different illegal operations in math.

1. You cannot take the square root of a negative number. (Hence, the
domain of √x is x ≥ 0.)

2. You cannot divide by zero. (Hence, the domain of 1
x

 is x ≠ 0.)
3. You cannot take the log of 0 or a negative number. (Hence, the domain

of log(x) is x > 0.)

Imaginary numbers give us a way of violating the first restriction. Less
obviously, they also give us a way of violating the third restriction: with
imaginary numbers, you can take the log of a negative number.

So, how about that second restriction? Do you ever reach a point in math
where the teacher admits “OK, we really can divide by 0 now”? Can we
define a new imaginary number j = 1

0 ?

The answer is emphatically no: you really can’t divide by 0. If you attempt
to define an imaginary way around this problem, all of math breaks down.
Consider the following simple example:

5 ∙ 0 = 3 ∙ 0 That’s true

5 = 3 Divide both sides by 0



You see? Dividing by 0 takes us from true conclusions to false ones.

The astonishing thing about the definition i =
√−1 is that, although it is
imaginary and nonsensical, it is consistent: it does not lead to any logical
contradictions. You can find many ways to simplify 1

i
 and it will always

reduce to –i in the end. Division by zero can never be consistent in this way,
so it is always forbidden.

A great deal of Calculus is concerned with getting around this problem, by
dividing by numbers that are very close to zero.

The World of Numbers

When you first learn about numbers, you learn the counting numbers:

1,2,3,4... counting numbers

These numbers are perfect for answering questions such as “How many
sticks do I have?” “How many days until Christmas?” “How many years
old are you?”

For other questions, however, you run into limitations. In measuring
temperature, for instance, we find that we need lower numbers than 1.
Hence, we arrive at a broader list:

...–4,–3,–2,–1,0,1,2,3,4... integers



The addition of 0 and the negative numbers gives us a new, broader set. The
original idea of numbers is now seen as a special case of this more general
idea; the original set is a subset of this one.

Still, if we are measuring lengths of sticks, we will find that often they fall
between our numbers. Now we have to add fractions, or decimals, to create
the set of rational numbers. I can no longer list the set, but I can give
examples.

1
2 , –3, 22

7 , 0, 2.718, 0.14141414... rational numbers

The word “rational” implies a ratio, or fraction: the ratio of two integers.
Hence, we define our new, broader set (rational numbers) in terms of our
older, more limited set (integers). Rational numbers can be expressed as
either fractions, or as decimals (which either end after a certain number of
digits, or repeat the same loop of digits forever).

This set seems to be all-inclusive, but it isn’t: certain numbers cannot be
expressed in this form.

√2, π irrational numbers

The square root of any non-perfect square is “irrational” and so is π. They
can be approximated as fractions, but not expressed exactly. As decimals,
they go on forever but do not endlessly repeat the same loop.



If you take the rationals and irrationals together, you get the real numbers.
The real numbers are all the numbers represented on a number line.

Now, with this unit, we have added the final piece of the puzzle, the
complex numbers. A complex number is any number a + bi where a and 
b are real numbers. Hence, just as our definition of rational numbers was
based on our definition of integers, so our definition of complex numbers is
based on our definition of real numbers. And of course, if b = 0 then we
have a real number: the old set is a subset of the new.

All of this can be represented in the following diagram.

The diagram captures the vital idea of subsets: all real numbers are complex
numbers, but not all complex numbers are real.

All the numbers
on a number line

are the real
numbers



Similarly, the diagram shows that if you take all the rational numbers, and
all the irrational numbers, together they make up the set of real numbers.



Matrices
This module introduces basic properties of matrices: concepts,
multiplication by a constant, addition and subtraction, and setting two
matrices equal to one another.

Conceptual Explanations: Matrices

A “matrix” is a grid, or table, of numbers. For instance, the following
matrix represents the prices at the store “Nuthin’ But Bed Stuff.”

King-sized Queen-sized Twin

Mattress $649 $579 $500

Box spring $350 $250 $200

Fitted sheet $15 $12 $10

Top sheet $15 $12 $10

Blanket $20 $20 $15

(The matrix is the numbers, not the words that label them.)

Of course, these prices could be displayed in a simple list: “King-sized
mattress,” “Queen-sized mattress,” and so on. However, this two-
dimensional display makes it much easier to compare the prices of
mattresses to box springs, or the prices of king-sized items to queen-sized
items, for instance.

Each horizontal list of numbers is referred to as a row; each vertical list is a
column. Hence, the list of all mattresses is a row; the list of all king-sized



prices is a column. (It’s easy to remember which is which if you think of
Greek columns, which are big posts that hold up buildings and are very tall
and...well, you know...vertical.) This particular matrix has 5 rows and 3
columns. It is therefore referred to as a 5×3 (read, “5 by 3”) matrix.

If a matrix has the same number of columns as rows, it is referred to as a
square matrix.

Adding and Subtracting Matrices

Adding matrices is very simple. You just add each number in the first
matrix, to the corresponding number in the second matrix.

[ ]+ [ ]= [ ]

For instance, for the upper-right-hand corner, the calculation was
3 + 40 = 43. Note that both matrices being added are 2×3, and the
resulting matrix is also 2×3. You cannot add two matrices that have
different dimensions.

As you might guess, subtracting works much the same way, except that you
subtract instead of adding.

[ ] – [ ] = [ ]

Once again, note that the resulting matrix has the same dimensions as the
originals, and that you cannot subtract two matrices that have different
dimensions.

Multiplying a Matrix by a Constant

What does it mean to multiply a number by 3? It means you add the number
to itself 3 times.

1 2 3

4 5 6

60 50 40

30 20 10

61 52 43

34 25 16

60 50 40

30 20 10

1 2 3

4 5 6

59 48 37

26 15 4



Multiplying a matrix by 3 means the same thing...you add the matrix to
itself 3 times.

3
[ ] = [ ] + [ ] + [ ] = [ ]

Note what has happened: each element in the original matrix has been
multiplied by 3. Hence, we arrive at the method for multiplying a matrix by
a constant: you multiply each element by that constant. The resulting matrix
has the same dimensions as the original.

1

2

[ ] = 

Matrix Equality

For two matrices to be “equal” they must be exactly the same. That is, they
must have the same dimensions, and each element in the first matrix must
be equal to the corresponding element in the second matrix.

For instance, consider the following matrix equation.

[ ] = [ ]

Both matrices have the same dimensions. And the upper-left and lower-
right elements are definitely the same.

But for the matrix to be equal, we also need the other two elements to be the
same. So

+ = 18

– = 12

Solving these two equations (for instance, by elimination) we find that
= 15, = 3.

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

3 6 9

12 15 18

1 2 3

4 5 6

1

2
1

3

2

2
5

2
3

1 +

12 10

1 18

− 10



You may notice an analogy here to complex numbers. When we assert that
two complex numbers equal each other, we are actually making two
statements: the real parts are equal, and the imaginary parts are equal. In
such a case, we can use one equation to solve for two unknowns. A very
similar situation exists with matrices, except that one equation actually
represents many more statements. For 2×2 matrices, setting them equal
makes four separate statements; for 2×3 matrices, six separate statements;
and so on.

OK, take a deep breath. Even if you’ve never seen a matrix before, the
concept is not too difficult, and everything we’ve seen so far should be
pretty simple, if not downright obvious.

Let that breath out now. This is where it starts to get weird.



Multiplying Matrices
This module covers multiplication of matrices.

Multiplying a Row Matrix by a Column Matrix

A “row matrix” means a matrix with only one row. A “column matrix”
means a matrix with only one column. When a row matrix has the same
number of elements as a column matrix, they can be multiplied. So the
following is a perfectly legal matrix multiplication problem:

[ ] x

These two matrices could not be added, of course, since their dimensions
are different, but they can be multiplied. Here’s how you do it. You
multiply the first (left-most) item in the row, by the first (top) item in the
column. Then you do the same for the second items, and the third items,
and so on. Finally, you add all these products to produce the final number.

A couple of my students (Nakisa Asefnia and Laura Parks) came up with an
ingenious trick for visualizing this process. Think of the row as a dump
truck, backing up to the column dumpster. When the row dumps its load,
the numbers line up with the corresponding numbers in the column, like so:

1 2 3 4

10

20

30

40



So, without the trucks and dumpsters, we express the result—a row matrix,
times a column matrix—like this:

=

There are several subtleties to note about this operation.

The picture is a bit deceptive, because it might appear that you are
multiplying two columns. In fact, you cannot multiply a column
matrix by a column matrix. We are multiplying a row matrix by a
column matrix. The picture of the row matrix “dumping down” only
demonstrates which numbers to multiply.
The answer to this problem is not a number: it is a 1-by-1 matrix.
The multiplication can only be performed if the number of elements
in each matrix is the same. (In this example, each matrix has 4
elements.)
Order matters! We are multiplying a row matrix times a column
matrix, not the other way around.

1 2 3 4

10

20

30

40

300



It’s important to practice a few of these, and get the hang of it, before you
move on.

Multiplying Matrices in General

The general algorithm for multiplying matrices is built on the row-times-
column operation discussed above. Consider the following example:




The key to such a problem is to think of the first matrix as a list of rows (in
this case, 4 rows), and the second matrix as a list of columns (in this case, 2
columns). You are going to multiply each row in the first matrix, by each
column in the second matrix. In each case, you will use the “dump truck”
method illustrated above.

Start at the beginning: first row, times first column.

Now, move down to the next row. As you do so, move down in the answer
matrix as well.

1 2 3

4 5 6

7 8 9

10 11 12

10 40

20 50

30 60



Now, move down the rows in the first matrix, multiplying each one by that
same column on the right. List the numbers below each other.

The first column of the second matrix has become the first column of the
answer. We now move on to the second column and repeat the entire
process, starting with the first row.

And so on, working our way once again through all the rows in the first
matrix.



We’re done. We can summarize the results of this entire operation as
follows:

=


It’s a strange and ugly process—but everything we’re going to do in the rest
of this unit builds on this, so it’s vital to be comfortable with this process.
The only way to become comfortable with this process is to do it. A lot.
Multiply a lot of matrices until you are confident in the steps.

Note that we could add more rows to the first matrix, and that would add
more rows to the answer. We could add more columns to the second matrix,
and that would add more columns to the answer. However—if we added a
column to the first matrix, or added a row to the second matrix, we would
have an illegal multiplication. As an example, consider what happens if we
try to do this multiplication in reverse:


 
Illegal multiplication

1 2 3

4 5 6

7 8 9

10 11 12

10 40

20 50

30 60

140 320

320 770

500 1220

680 1670

10 40

20 50

30 60

1 2 3

4 5 6

7 8 9

10 11 12



If we attempt to multiply these two matrices, we start (as always) with the
first row of the first matrix, times the first column of the second matrix:

[ ]
 . But this is an illegal multiplication; the items don’t line up,

since there are two elements in the row and four in the column. So you
cannot multiply these two matrices.

This example illustrates two vital properties of matrix multiplication.

The number of columns in the first matrix, and the number of rows in
the second matrix, must be equal. Otherwise, you cannot perform the
multiplication.
Matrix multiplication is not commutative—which is a fancy way of
saying, order matters. If you reverse the order of a matrix
multiplication, you may get a different answer, or you may (as in this
case) get no answer at all.

10 40

1

4

7

10



The Identity Matrix
This module introduces the identity matrix and its properties.

When multiplying numbers, the number 1 has a special property: when you
multiply 1 by any number, you get that same number back. We can express
this property as an algebraic generalization:
Equation:

1x = x

The matrix that has this property is referred to as the identity matrix.

Definition of Identity Matrix
The identity matrix, designated as [I], is defined by the property:

[A][I] = [I][A] = [A]

Note that the definition of [I] stipulates that the multiplication must
commute—that is, it must yield the same answer no matter which order
you multiply in. This is important because, for most matrices, multiplication
does not commute.

What matrix has this property? Your first guess might be a matrix full of 1s,
but that doesn’t work:

[ ][ ] = [ ] so
[ ]
is not an identity matrix

The matrix that does work is a diagonal stretch of 1s, with all other
elements being 0.

1 2

3 4

1 1

1 1

3 3

7 7

1 1

1 1



[ ][ ]=
[ ] so
[ ]
is the identity for

2x2 matrices

 =

is the identity for

3x3 matrices

You should confirm those multiplications for yourself, and also confirm that
they work in reverse order (as the definition requires).

Hence, we are led from the definition to:

The Identity Matrix
For any square matrix, its identity matrix is a diagonal stretch of 1s going
from the upper-left-hand corner to the lower-right, with all other elements
being 0.
Non-square matrices do not have an identity. That is, for a non-
square matrix [A], there is no matrix such that [A][I] = [I][A] = [A].

Why no identity for a non-square matrix? Because of the requirement of
commutativity. For a non-square matrix [A] you might be able to find a
matrix [I] such that [A][I] = [A]; however, if you reverse the order, you
will be left with an illegal multiplication.

1 2

3 4

1 0

0 1

1 2

3 4

1 0

0 1

2 5 9

π −2 8

−3 1/2 8.3

1 0 0

0 1 0

0 0 1
2 5 9

π −2 8

−3 1/2 8.3

1 0 0

0 1 0

0 0 1



The Inverse Matrix
This module introduces the inverse matrix and its properties.

We have seen that the number 1 plays a special role in multiplication, because 1x = x.

The inverse of a number is defined as the number that multiplies by that number to give
1: b is the inverse of a if ab = 1. Hence, the inverse of 3 is 1

3 ; the inverse of −5
8  = −8

5 .
Every number except 0 has an inverse.

By analogy, the inverse of a matrix multiplies by that matrix to give the identity matrix.

Definition of Inverse Matrix
The inverse of matrix [A], designated as [A]−1, is defined by the property:

[A][A]−1 = [A]−1[A] = [I]

The superscript –1 is being used here in a similar way to its use in functions. Recall that
f –1(x) does not designate an exponent of any kind, but instead, an inverse function. In
the same way, [A]–1 does not denote an exponent, but an inverse matrix.

Note that, just as in the definition of the identity matrix, this definition requires
commutativity—the multiplication must work the same in either order.

Note also that only square matrices can have an inverse. Why? The definition of an
inverse matrix is based on the identity matrix [I], and we already said that only square
matrices even have an identity!

How do you find an inverse matrix? The method comes directly from the definition, with
a little algebra.

Example: Finding an Inverse Matrix

Find the inverse of [ ] The problem
3 4

5 6



Example: Finding an Inverse Matrix

[ ][ ] = [ ]

This is the key
step. It
establishes

[ ]
as the

inverse that
we are looking
for, by
asserting that
it fills the
definition of
an inverse
matrix: when
you multiply
this mystery
matrix by our
original
matrix, you
get [I]. When
we solve for
the four
variables a, b,
c, and d, we
will have
found our
inverse
matrix.

3 4

5 6

a b

c d

1 0

0 1

a b

c d



Example: Finding an Inverse Matrix

[ ] = [ ]

Do the
multiplication.
(You should
check this step
for yourself,
it’s great
practice. For
instance, you
start by
multiplying
first row x
first column,
and you get
3a+4c.)

3a + 4c = 1 3b + 4d = 0 5a + 6c = 0 5b + 6d = 1

Remember
what it means
for two
matrices to be
equal: every
element in the
left must
equal its
corresponding
element on the
right. So, for
these two
matrices to
equal each
other, all four
of these
equations
must hold.

3a + 4c 3b + 4d

5a + 6c 5b + 6d

1 0

0 1



Example: Finding an Inverse Matrix

a = –3 b = 2 c = 2 1
2 d = –1 1

2

Solve the first
two equations
for a and c by
using either
elimination or
substitution.
Solve the
second two
equations for 
b and d by
using either
elimination or
substitution.
(The steps are
not shown
here.)

So the inverse is:
[ ]

Having found
the four
variables, we
have found
the inverse.

Did it work? Let’s find out.

Testing our Inverse Matrix

[ ]
[ ]

[ ]

The definition of an
inverse matrix: if we
have indeed found an
inverse, then when we
multiply it by the
original matrix, we
should get [I].

−3 2

2 1
2 −1 1

2

−3 2

2 1
2 −1 1

2

3 4

5 6

1 0

0 1



Testing our Inverse Matrix

[ ]

[ ]

Do the multiplication.

[ ] = [ ]
It works!

Note that, to fully test it, we would have to try the multiplication in both orders. Why?
Because, in general, changing the order of a matrix multiplication changes the answer;
but the definition of an inverse matrix specifies that it must work both ways! Only one
order was shown above, so technically, we have only half-tested this inverse.

This process does not have to be memorized: it should make logical sense. Everything
we have learned about matrices should make logical sense, except for the very arbitrary-
looking definition of matrix multiplication.

(−3)(3) + (2)(5) (−3)(4) + (2)(6)

(2 1
2 )(3) + (−1 1

2 )(5) (2 1
2 )(4) + (−1 1

2 )(6)

1 0

0 1

−9 + 10 −12 + 12

7 1
2 − 7 1

2 10 − 9

1 0

0 1



Matrix Concepts -- Matrices on Calculators

Many modern graphing calculators have all the basic matrix operations
built into them. The following is a brief overview of how to work with
matrices on a TI-83, TI-83 Plus, TI-84, or TI-84 Plus.

The calculator has room to store up to ten matrices at once. It refers to these
matrices as [A], [B], and so on, through [J]. Note that these are not the
same as the 26 lettered memories used for numbers.

The following steps will walk you through the process of entering and
manipulating matrices.

1. Hit the MATRX button. On a TI-83, this is a standalone button; on a TI-
83 Plus, you first hit 2nd and then MATRIX (above the x–1 button).
The resulting display is a list of all the available matrices. (You have to
scroll down if you want to see the ones below [G].)

2. Hit the right arrow key ► twice, to move the focus from NAMES to
EDIT. This signals that you want to create, or change, a matrix.

3. Hit the number 1 to indicate that you want to edit the first matrix,
[A].

4. Hit 4 ENTER 3 ENTER to indicate that you want to create a 4x3
matrix. (4 rows, 3 columns.)

5. Hit 1 ENTER 2 ENTER 3 ENTER
4 ENTER 5 ENTER 6
ENTER
7 ENTER 8 ENTER 9 ENTER
10 ENTER 11 ENTER
12 ENTER
This fills in the matrix with those numbers (you can watch
it fill as you go). If you make a mistake, you can use the arrow keys to
move around in the matrix until the screen looks like the picture below.



6. Hit 2nd Quit to return to the main screen.
7. Return to the main matrix menu, as before. However, this time, do not

hit the right arrow to go to the EDIT menu. Instead, from the NAMES
menu, hit the number 1. This puts [A] on the main screen. Then hit
ENTER to display matrix [A].

8. Go through the process (steps 1-7) again, with a few changes. This
time, define matrix [B] instead of matrix [A]. (This will change step
3: once you are in the EDIT menu, you will hit a 2 instead of a 1.)
Define [B] as a 3x2 matrix in step 4. Then, in step 5, enter the
following numbers:
Equation:

When you are done, and have returned to the main screen and punched
2 in the NAMES menu (step 7), your main screen should look like
this:

9. Now, type the following keys, watching the calculator as you do so.
TI-83 Plus users should always remember to hit 2nd MATRIX instead
of just MATRX.
MATRX 1 + MATRX 2

This instructs the computer to add the two matrices. Now hit ENTER

10 40

20 50

30 60



Hey, what happened? You asked the computer to add two matrices. But
these matrices have different dimensions. Remember that you can
only add two matrices if they have the same dimensions—that is, the
same number of rows as columns. So you got an “Error: Dimension
Mismatch.”
Hit ENTER to get out of this error and return to the main
screen.

10. Now try the same sequence without the + key: MATRX 1 MATRX 2
ENTER

This instructs the calculator to multiply the two matrices. This is a
legal multiplication—in fact, you may recognize it as the
multiplication that we did earlier. The calculator displays the result that

we found by hand:
  = 

11. Enter a third matrix, matrix [C]=
 . When you confirm that it is

entered correctly, the screen should look like this:

Now type MATRX 3 x-1 ENTER

This takes the inverse of matrix [C]. Note that the answer matches the
inverse matrix that we found before.

12. Type MATRX 3 x-1 MATRX 3 ENTER

1 2 3

4 5 6

7 8 9

10 11 12

10 40

20 50

30 60

140 320

320 770

500 1220

680 1670

3 4

5 6



This instructs the calculator to multiply matrix [C]-1 times matrix [C].
The answer, of course, is the 2×2 identity matrix [I].



Determinants
This module covers matrix determinants and their uses.

The Determinant of a 2x2 Matrix

In the exercise “Inverse of the Generic 2x2 Matrix,” you found that the inverse of

the matrix [ ] is 1
ad−bc [ ]. This formula can be used to very quickly

find the inverse of any 2x2 matrix.

Note that if ad– bc = 0, the formula does not work, since it puts a 0 in the
denominator. This tells us that, for any 2x2 matrix, if ad– bc = 0 the matrix has
no inverse.

The quantity ad–bc is therefore seen to have a special importance for 2x2 matrices,
and it is accorded a special name: the “determinant.” Determinants are represented
mathematically with absolute value signs: the determinant of matrix [A] is |A|.

Definition of the Determinant of a 2x2 Matrix

If matrix [A] = [ ],
the determinant is the number
|A| = ad − bc.

For instance, for the matrix [ ], the determinant is (3)(6)–(4)(5) = –2.

Note that the determinant is a number, not a matrix. It is a special number that is
associated with a matrix.

We said earlier that “if ad– bc = 0 the matrix has no inverse.” We can now restate
this result.

Any square matrix whose determinant is not 0, has an inverse matrix. Any square
matrix with determinant 0 has no inverse.

This very important result is analogous to the result stated earlier for numbers:
every number except 0 has an inverse.

The Determinant of a 3x3 Matrix (or larger)

a b

c d

d −b

−c a

a b

c d

3 4

5 6



Any square matrix has a determinant—an important number associated with that
matrix. Non-square matrices do not have a determinant.

How do you find the determinant of a 3x3 matrix? The method presented here is
referred to as “expansion by minors.” There are other methods, but they turn out to
be mathematically equivalent to this one: that is, they end up doing the same
arithmetic and arriving at the same answer.

Example: Finding the Determinant of a 3x3 Matrix

Find the determinant

of The problem.

***SORRY, THIS
MEDIA TYPE IS
NOT
SUPPORTED.***

We’re going to walk through the top row, one
element at a time, starting with the first
element (the 2). In each case, begin by crossing
out the row and column that contain that
number.

∣ ∣=(8)(1)–(3)

(1)=5

Once you cross out one row and column, you
are left with a 2x2 matrix (a “minor”). Take the
determinant of that matrix.

2(5)=10

Now, that “minor” is what we got by crossing
out a 2 in the top row. Multiply that number in
the top row (2) by the determinant of the minor
(5).

2 4 5

10 8 3

1 1 1

8 3

1 1



Example: Finding the Determinant of a 3x3 Matrix

***SORRY, THIS
MEDIA TYPE IS
NOT
SUPPORTED.***
(10)(1)–(3)(1)=
74(7)=28

Same operation for the second element in the
row (the 4 in this case)...

***SORRY, THIS
MEDIA TYPE IS
NOT
SUPPORTED.***
(10)(1)–(8)(1) =
25(2)=10

...and the third (the 5 in this case).

+10 – 28 + 10 = –8

Take these numbers, and alternately add and
subtract them; add the first, subtract the
second, add the third. The result of all that is
the determinant.

This entire process can be written more concisely as:

= 2 −4 + 5 = 2 5 − 4 7 + 5 2 = −8

This method of “expansion of minors” can be extended upward to any higher-
order square matrix. For instance, for a 4x4 matrix, each “minor” that is left when
you cross out a row and column is a 3x3 matrix. To find the determinant of the
4x4, you have to find the determinants of all four 3x3 minors!

Fortunately, your calculator can also find determinants. Enter the matrix given
above as matrix [D]. Then type:

MATRX ► 1MATRX 4 ) ENTER

The screen should now look like this:

2 4 5

10 8 3

1 1 1

8 3

1 1

10 3

1 1

10 8

1 1



If you watched the calculator during that sequence, you saw that the right-arrow
key took you to the MATH submenu within the MATRIX menus. The first item in
that submenu is DET ( which means “determinant of.”

What does the determinant mean? It turns out that this particular odd set of
operations has a surprising number of applications. We have already seen one—in
the case of a 2x2 matrix, the determinant is part of the inverse. And for any square
matrix, the determinant tells you whether the matrix has an inverse at all.

Another application is for finding the area of triangles. To find the area of a
triangle whose vertices are (a,b), (c,d), and (e,f), you can use the formula: Area =

½
∣ ∣. Hence, if you draw a triangle with vertices (2,10), (4,8), and (5,3),

the above calculation shows that the area of this triangle will be 4.

a c e

b d f

1 1 1



Solving Linear Equations
This module explains how to use matrices to solve linear equations.

At this point, you may be left with a pretty negative feeling about matrices.
The initial few ideas—adding matrices, subtracting them, multiplying a
matrix by a constant, and matrix equality—seem almost too obvious to be
worth talking about. On the other hand, multiplying matrices and taking
determinants seem to be strange, arbitrary sequences of steps with little or
no purpose.

A great deal of it comes together in solving linear equations. We have seen,
in the chapter on simultaneous equations, how to solve two equations with
two unknowns. But suppose we have three equations with three unknowns?
Or four, or five? Such situations are more common than you might suppose
in the real world. And even if you are allowed to use a calculator, it is not at
all obvious how to solve such a problem in a reasonable amount of time.

Surprisingly, the things we have learned about matrix multiplication, about
the identity matrix, about inverse matrices, and about matrix equality, give
us a very fast way to solve such problems on a calculator!

Consider the following example, three equations with three unknowns:
Equation:

x + 2y − z = 11

Equation:

2x − y + 3z = 7

Equation:

7x − 3y − 2z = 2

Define a 3×3 matrix [A] which is the coefficients of all the variables on the
left side of the equal signs:



[A] =


Define a 3×1 matrix [B] which is the numbers on the right side of the equal
signs:

[B] =


Punch these matrices into your calculator, and then ask the calculator for
[A-1][B]: that is, the inverse of matrix [A], multiplied by matrix [B].

The calculator responds with a 3×1 matrix which is all three answers. In
this case, x = 3,
y = 5, and z = 2.

The whole process takes no longer than it takes to punch a few matrices
into the calculator. And it works just as quickly for 4 equations with 4
unknowns, or 5, etc.

Huh? Why the heck did that work?

Solving linear equations in this way is fast and easy. But with just a little
work—and with the formalisms that we have developed so far about
matrices—we can also show why this method works.

Step 1: In Which We Replace Three Linear Equations With One
Matrix Equation

First of all, consider the following matrix equation:

1 2 −1

2 −1 3

7 −3 −2

11

7

2



=


The matrix on the left may look like a 3×3 matrix, but it is actually a 3×1
matrix. The top element is x + 2y − z (all one big number), and so on.

Remember what it means for two matrices to be equal to each other. They
have to have the same dimensions (

). And all the elements have to be equal to each other. So for this matrix
equation to be true, all three of the following equations must be satisfied:
Equation:

x + 2y– z = 11

Equation:

2x– y + 3z = 7

Equation:

7x– 3y– 2z = 2

Look familiar? Hey, this is the three equations we started with! The point is
that this one matrix equation is equivalent to those three linear
equations. We can replace the original three equations with one matrix
equation, and then set out to solve that.

Step 2: In Which We Replace a Simple Matrix Equation with a More
Complicated One

Do the following matrix multiplication. (You will need to do this by hand—
since it has variables, your calculator can’t do it for you.)

x + 2y − z

2x − y + 3z

7x − 3y − 2z

11

7

2






If you did it correctly, you should have wound up with the following 3×1
matrix:
Equation:

Once again, we pause to say…hey, that looks familiar! Yes, it’s the matrix
that we used in Step 1. So we can now rewrite the matrix equation from
Step 1 in this way:

=


Stop for a moment and make sure you’re following all this. I have shown,
in two separate steps, that this matrix equation is equivalent to the three
linear equations that we started with.

But this matrix equation has a nice property that the previous one did not.
The first matrix (which we called [A] a long time ago) and the third one
([B]) contain only numbers. If we refer to the middle matrix as [X] then we
can write our equation more concisely:

[A][X] = [B], where [A] =
 , [X] =
 , and [B] =


Most importantly, [X] contains the three variables we want to solve for! If
we can solve this equation for [X] we will have found our three variables x,

1 2 −1

2 −1 3

7 −3 −2

x

y

z

x + 2y − z

2x − y + 3z

7x − 3y − 2z

1 2 −1

2 −1 3

7 −3 −2

x

y

z

11

7

2

1 2 −1

2 −1 3

7 −3 −2

x

y

z

11

7

2



y, and z.

Step 3: In Which We Solve a Matrix Equation

We have rewritten our original equations as [A][X] = [B], and redefined
our original goal as “solve this matrix equation for [X].” If these were
numbers, we would divide both sides by [A]. But these are matrices, and we
have never defined a division operation for matrices. Fortunately, we can do
something just as good, which is multiplying both sides by [A]–1. (Just as,
with numbers, you can replace “dividing by 3” with “multiplying by 1

3
.”)

Solving a Matrix Equation

[A][X] = [B] The problem.

[A]–1[A][X] = [A]–1[B]

Multiply both sides by [A]–1, on the
left. (Remember order matters! If we
multiplied by [A]–1 on the right, that
would be doing something different.)

[I][X] = [A]–1[B]
[A]–1[A] = [I] by the definition of an
inverse matrix.

[X] = [A]–1[B]
[I] times anything is itself, by
definition of the identity matrix.

So we’re done! [X], which contains exactly the variables we are looking
for, has been shown to be [A]–1[B]. This is why we can punch that formula
into our calculator and find the answers instantly.



Let’s try one more example

Equation:

5x– 3y– 2z = 4

Equation:

x + y– 7z = 7

Equation:

10x– 6y– 4z = 10

We don’t have to derive the formula again—we can just use it. Enter the
following into your calculator:

[A] =
  [B] =


Then ask the calculator for [A]–1[B].

The result?

What happened? To understand this error, try the following:

5 −3 −2

1 1 −7

10 −6 −4

4

7

10



Hit ENTER to get out of the error, and then hit <MATRX> ► 1 <MATRX>
1 ) ENTER

Aha! Matrix [A] has a determinant of 0. A matrix with 0 determinant has
no inverse. So the operation you asked the calculator for, [A]–1[B], is
impossible.

What does this tell us about our original equations? They have no solution.
To see why this is so, double the first equation and compare it with the third
—it should become apparent that both equations cannot be true at the same
time.



Data Concepts -- Introduction

Conceptual Explanations: Modeling Data with Functions

In school, you generally start with a function and work from there to
numbers. “Newton’s Law tells us that F = ma. So if you push on a 3kg
object with a 12N force, what will the acceleration be?”

In real life, the work often goes the other way. Newton didn’t start out
knowing that F = ma; he observed the world around him, and concluded
that F = ma. In science, you begin with data—that is, numbers—and
attempt to find a mathematical function that will model the data. Then you
use that function to make predictions for new data. If the predictions come
true, you gain confidence in your model.

So, this unit is about a few processes that can be used to look at a set of
numbers and find a function that relates them.



Direct and Inverse Variations
This module introduces the concept of direct and inverse variation in
Algebra in preparation for modeling data with functions.

Direct Variation

As a simple example, consider the variable c which is the number of cars in
a parking lot, and the variable t which is the number of tires in the parking
lot. Assuming each car has four tires, we might see numbers like this.

c (number of cars) t (number of tires)

0 0

1 4

2 8

3 12

4 16

These two columns stand in a very particular relationship to each other
which is referred to as direct variation.

Definition of “Direct Variation”
Two variables are in “direct variation” with each other if the following
relationship holds: whenever one variable doubles, the other variable
doubles. Whenever one variable triples, the other variable triples. And so
on.



When the left-hand column goes up, the right-hand column goes up. This is
characteristic of direct variation, but it does not prove a direct variation.
The function y = x + 1 has the characteristic that whenever x goes up, y
also goes up; however, it does not fulfill the definition of direct variation.

The equation for this particular function is, of course, t(c) = 4c. In general,
direct variation always takes the form y = kx, where k is some constant—a
number, not a function of x. This number is referred to as the constant of
variation.

Note that, in real life, these relationships are not always exact! For instance,
suppose m is the number of men in the room, and w is the weight of all the
men in the room. The data might appear something like this:

m (number of men) w (total weight of men, in pounds)

0 0

1 160

2 330

3 475

4 655

Not all men weigh the same. So this is not exactly a direct variation.
However, looking at these numbers, you would have a very good reason to
suspect that the relationship is more or less direct variation.

How can you confirm this? Recall that if this is direct variation, then it
follows the equation w = km, or w/m = k. So for direct variation, we



would expect the ratio w/m to be approximately the same in every case. If
you compute this ratio for every pair of numbers in the above table, you
will see that it does indeed come out approximately the same in each case.
(Try it!) So this is a good candidate for direct variation.

Inverse Variation

Suppose 5 cars all travel 120 miles. These cars get different mileage. How
much gas does each one use? Let m be the miles per gallon that a car gets,
and g be the number of gallons of gas it uses. Then the table might look
something like this.

m (miles/gallon) g (gallons of gas used to travel 120 miles)

10 12

20 6

30 4

40 3

60 2

These variables display an inverse relationship.

Definition of “Inverse Variation”
Two variables are in “inverse variation” with each other if the following
relationship holds: whenever one variable doubles, the other variable
halves. Whenever one variable triples, the other variable drops in a third.
And so on.



Note that as the first column gets bigger, the second column gets smaller.
This is suggestive of an inverse relationship, but it is not a guarantee.
y = 10– x would also have that property, and it is not inverse variation.

The equation for this particular function is g = 120/m. In general, inverse
variation can always be expressed as y = k/x, where k is once again the
constant of variation.

If y = k/x, then of course xy = k. So inverse variation has the
characteristic that when you multiply the two variables, you get a constant.
In this example, you will always get 120. With real life data, you may not
always get exactly the same answer; but if you always get approximately
the same answer, that is a good indication of an inverse relationship.

More Complex Examples

In the year 1600, Johannes Kepler sat down with the data that his teacher,
Tycho Brahe, had collected after decades of carefully observing the planets.
Among Brahe’s data was the period of each planet’s orbit (how many years
it takes to go around the sun), and the semimajor axis of the orbit (which is
sort of like a radius, but not quite—more on this in “Ellipses”). Today, these
figures look something like this.

Planet
Semimajor Axis a (1010
meters)

Period T
(years)

Mercury 5.79 0.241

Venus 10.8 0.615

Earth 15.0 1 (*duh)



Planet
Semimajor Axis a (1010
meters)

Period T
(years)

Mars 22.8 1.88

Jupiter 77.8 11.9

Saturn 143 29.5

Uranus 287 84

Neptune 450 165

What can we make of this data? As a goes up, T  clearly also goes up. But
they are not directly proportional. For instance, looking at the numbers for
Uranus and Neptune, we see that 165 is almost exactly twice 84; but 450 is
much less than twice 287. Is there a consistent pattern? Kepler went down
in history for figuring out that the square of the period is directly
proportional to the cube of the semimajor axis: in numbers, T 2 = ka3.
You can confirm this for yourself, using the numbers above. (What is k?)

So we see that the concepts of “directly proportional” and “inversely
proportional” can be applied to situations more complex than y = kx or
y = k/x.

The situation becomes more interesting still when multiple independent
variables are involved. For instance, Isaac Newton was able to explain
Kepler’s results by proposing that every body in the world exerts a
gravitational field that obeys the following two laws.

When the mass of the body doubles, the strength of the gravitational
field doubles
When the distance from the body doubles, the strength of the field
drops in a fourth

Science texts express these laws more concisely: the field is directly
proportional to the mass, and inversely proportional to the square of



the radius. It may seem as if these two statements require two different
equations. But instead, they are two different clues to finding the one
equation that allows you to find the gravitational field F at a distance r from
a given mass m. That one equation is F = Gm

r2  where G, the constant of
proportionality, is one of the universal constants of nature. This does not
come from combining the two equations F = km
and F = k

r2 
as a
composite function or anything else. Rather, it is one equation that
expresses both relationships properly: doubling the mass doubles the field,
and doubling the radius drops the field in a fourth.



Data Concepts -- Linear Functions

Finding a Linear Function for any Two Points

In an earlier unit, we did a great deal of work with the equation for the
height of a ball thrown straight up into the air. Now, suppose you want an
equation for the speed of such a ball. Not knowing the correct formula, you
run an experiment, and you measure the two data points.

t (time) v (velocity, or speed)

1 second 50 ft/sec

3 seconds 18 ft/sec

Obviously, the ball is slowing down as it travels upward. Based on these
two data points, what function v(t) might model the speed of the ball?

Given any two points, the simplest equation is always a line. We have two
points, (1,50) and (3,18). How do we find the equation for that line? Recall
that every line can be written in the form:
Equation:

y = mx + b

If we can find the m and b for our particular line, we will have the formula.

Here is the key: if our line contains the point (1,50) that means that
when we plug in the x-value 1, we must get the y-value 50.



Similarly, we can use the point (3,18) to generate the equation 
18 = m(3) + b. So now, in order to find m and b, we simply have to solve
two equations and two unknowns! We can solve them either by substitution
or elimination: the example below uses substitution.
Equation:

m + b = 50 → b = 50 − m

Equation:

3m + b = 18 → 3m + (50 − m) = 18

Equation:

2m + 50 = 18

Equation:

2m =– 32

Equation:

m = −16

Equation:

b = 50 − (−16) = 66

So we have found m and b. Since these are the unknowns the in the
equation y = mx + b, the equation we are looking for is:
Equation:

y =– 16x + 66



Based on this equation, we would expect, for instance, that after 4 seconds,
the speed would be 2 ft/sec. If we measured the speed after 4 seconds and
found this result, we would gain confidence that our formula is correct.



Finding a Parabolic Function for any Three Points
This module introduces the concept of modeling data with parabolic
functions in Algebra.

Finding a Parabolic Function for any Three Points

Any two points are joined by a line. Any three points are joined by a
vertical parabola.

Let’s start once again with the exceptions. Once again, if any two of the
points are vertically aligned, then no function can join them. However, there
is no an additional exception—if all three points lie on a line, then no
parabola joins them. For instance, no parabola contains the three points
(1,3), (2,5), and (5,11). In real life, of course, if we wanted to model those
three points, we would be perfectly happy to use the line y = 2x+ 1
instead of a parabola.

However, if three points are not vertically aligned and do not lie on a
line, it is always possible to find a vertical parabola that joins them. The
process is very similar to the process we used for a line, except that the
starting equation is different.

Example:
Finding a Vertical Parabola to Fit Three Points
Find a vertical parabola containing the points (-2,5), (–1,6), and (3,–
10).
The problem. As with our example earlier, this problem could easily come
from an attempt to find a function to model real-world data.

y = ax2 + bx+ c

This is the equation for any vertical parabola. Our job is to find a,
b, and c.
Note that this starting point is the same for any problem with three points,
just as any problem with two points starts out y = mx+ b.



Each point represents an (x, y) pair that must create a true equation in our
function. Hence, we can plug each point in for x and y to find three
equations that must be true. We can now solve for our 3 unknowns.
Rewrite the above three equations in a more standard form:

Uh-oh. Now what? In the linear example, we used elimination or
substitution to solve for the two variables. How do we solve three? Oh,
yeah. Matrices! Rewrite the above three equations as [A][X] = [B], where

X = 
is what we want.

A =

B =

[A]–1 B =

5 = a(−2)2 + b(–2)+ c

6 = a(–1)2 + b(–1)+ c

–10 = a(3)2 + b(3)+ c

4a– 2b+ c = 5

a– b+ c = 6

9a+ 3b+ c = –10

a

b

c

4 −2 1

1 −1 1

9 3 1

5

6

−10

−1

−2

5



From the calculator, of course. Remember what this means! It means that 
a = –1, b = –2, and c = 5. We can now plug these into our original
equation, y = ax2 + bx+ c.

y =–x2– 2x+ 5

So this is the equation we were looking for.

Did it work? Remember that we were looking for a parabola that contained
the three points(–2,5), (–1,6), and (3,–10). If this parabola contains those
three points, then our job is done. Let’s try the first point.
Equation:

5
?
= −(−2)2 − 2 −2 + 5

= −4 + 4 + 5

So the parabola does contain the point (-2,5). You can confirm for yourself
that it also contains the other two points.

Finally, remember what this means! If we had measured some real-world
phenomenon and found the three points (–2,5), (–1,6), and (3,–10), we
would now suspect that the function y =–x2– 2x+ 5
might serve as a
model for this phenomenon.

This model predicts that if we make a measurement at x = −3 we will find
that y = 2. If we made such a measurement and it matched the prediction,
we would gain greater confidence in our model. On the other hand, if the
measurement was far off the prediction, we would have to rethink our
model.



A surprising application: “secret sharing”

Bank vaults are commonly secured by a method called “secret sharing.”
The goal of a secret sharing system runs something like this: if any three
employees enter their secret codes at the same time, the vault will open.
But any two employees together cannot open the vault.

Secret sharing is implemented as follows.

Choose a parabolic function—that is, choose the numbers a, b, and c in
the equation y = ax2 + bx+ c. This function is chosen at random,
and is not programmed into the vault or given to any employee.
The actual number that will open the vault is the y-intercept of the
parabola: that is, the y-value of the parabola when x = 0. This number
is not given to any employee.
Each employee’s secret code is one point on the parabola.

When three employees enter their secret codes at the same time, the vault
computer uses the three points to compute a,
b, and c for the parabola. As
we have seen, this computation can be done quickly and easy using inverse
matrices and matrix multiplication, both of which are easy algorithms to
program into a computer. Once the computer has those three numbers, it
computes the y-value when x = 0, and uses this number to open the vault.

Any three employees—that is, any three points—are enough to uniquely
specify the parabola. But if you only have two points, you are no closer to
the answer than when you started: the secret y value could still be, literally,
any number at all.

Note also that the system is easily extendable. That is, if you want to say
that four employees are required to open the vault, you just move up to a
third-order polynomial, y = ax3 + bx2 + c+ d. The resulting equations—
four equations with four unknowns—are just as easy, with matrices, as three
were.



Data Concepts -- Regression on the the Calculator

Regression on the Calculator

What Kepler did is an example of “regression”: finding an equation that
models a particular set of data.

Kepler became famous because regression is hard. Who would have
thought to look for T 2 = ka3? Especially when you consider all the other
equations that would still have a “this goes up, that goes up” relationship,
such as T = 2a + 7, or T = 1

10−a
, or maybe T = 3log5a?

Fortunately, we have a tool that Kepler did not have: the modern computer.
Mathematical programs and graphing calculators can take a set of points,
and find the line or curve of “best fit” to model the data.

As an example of this process, suppose that you have run an experiment
and generated three data points: (2,1), (4,3), and (5,8). What function might
model those data?

Note:Note: the directions below are given for a TI-83 or compatible
calculator. Many other calculators can perform the same functions, but the
implementation details may look quite different.

Entering the data

1. Hit STAT to go into the Statistics menu.
2. Choose Edit... This brings you to a screen where you enter a

bunch of L1 and L2 values.



FIXME: A LIST CAN NOT BE A TABLE ENTRY.
Enter the
L1 and L2 values as follows: for each data point, the x-
coordinate is in the L1 list, and the y-coordinate is in the L2
list.The screen to the right shows the points (2,1), (4,3), and
(5,8).

1. Hit 2nd QUIT return to the main screen.

Viewing the data, and guessing at the shape

Once you have entered your points into the L1 and L2 lists, your calculator
can show you a “scatterplot”—which is a pointlessly fancy word for “a
graph of a bunch of points,” like you used to make when you were first
learning what graphing was.

1. Hit WINDOW (near the upper-left-hand corner of the calculator).
2. Set the variables Xmin, Xmax, Ymin, and Ymax appropriately. For

instance, for the three points shown above, the x-values are 2, 4, and 5,
and the y-values are 1, 3, and 8. So it might make sense to set Xmin=0,
XMax=10, Ymin=0, and Ymax=10—and that is how I did it in the
drawing below. Of course, there are many other settings you could use.
But if you go through the whole process and don’t see any points, it’s a
reasonable guess that your window is not set properly.

3. Hit Y= (upper-left-hand corner of the calculator).
4. Then, hit the up-arrow key, so the focus moves to Plot1 (which will

start blinking).
5. Hit ENTER. It’s actually impossible, at this point, to see that anything

has happened. But if you down-arrow away from Plot1, you should
see that it remains darkened (white letters on a black background,
instead of the other way around). This indicates that it has been
selected.



FIXME: A LIST CAN NOT BE A TABLE ENTRY.
Hit GRAPH
(upper-right-hand corner of the calculator). The calculator now
displays the points. From the image, you can see that a quadratic
(parabolic) or exponential function might be a reasonable guess,
whereas a line or logarithmic function would be unlikely to fit.

At this point, looking at the data, it is often useful to categorize it in two
ways.

First: is it increasing or decreasing? In our example, of course, the points
are increasing. (Some data, of course, may be doing both at different times:
consider, for instance, a parabola.)

Now, in the case of an increasing function, you can categorize it as one of
the following.

If it is increasing steadily, that suggests a line. (Remember that
what makes a linear function linear is that it always goes up at
the same rate, or slope!)

If it is increasing more and more slowly, that suggests a
logarithmic function. (A square root would also have this basic
shape, but you cannot do a square-root-regression.)

If it is increasing more and more quickly, that suggests an
exponential function, or possibly the right side of a quadratic
function (a parabola).

Decreasing functions can be categorized similarly, of course. If a function
decreases and then increases, a parabola is probably the best fit. Functions



that go up, then down, then up again, are most likely to be higher-order
polynomials.

Finding the formula

Once you have decided on the right shape, the hard work is done: the
calculator takes care of the rest.

1. Hit STAT to return again to the Statistics menu.
2. Hit the right-arrow key to go to CALC.
3. At this point, you have several choices. LinReg will give you a line

that best fits your points. QuadReg will give you a quadratic function,
aka a second-order polynomial. There are also options for "cubic"
(third-order polynomial), "quartic" (fourth-order polynomial),
logarithmic, or exponential curves. Choose the one you want and hit
ENTER.

The calculator does not graph your curve for you, but it does tell you what
the curve is. For instance, if I run a QuadReg on the data above, the
calculator gives me:

This tells me that the best quadratic fit for my data is the curve
y = 1.33x2 − 7x + 9.67. One way to double-check this, of course, is to
enter Y 1 = 1.33x2 − 7x + 9.67 and then graph it, and see how closely it
approximates the points!



Note:Remember that whatever option you choose, it will operate on the
points you have entered in the L1 and L2 lists, so make sure your data is
correctly entered there!

Starting over

There's just one more thing you have to know: once you've done this once,
how do you clear out the lists to enter new ones? Here is one way to do it.

1. Hit MEM (you do this by hitting the yellow 2nd key, and then hitting
+).

2. This brings up a menu. Choose ClrAllLists.
3. Then—after you return to the main screen—hit ENTER and the lists

are emptied out.



Conic Concepts
This module introduces the concept of conic sections in Algebra.

So far, we have talked about how to graph two shapes: lines, and parabolas.
This unit will discuss parabolas in more depth. It will also discuss circles,
ellipses, and hyperbolas. These shapes make up the group called the conic
sections: all the shapes that can be created by intersecting a plane with a
double cone.

On the left is a double cone.If you intersect the double
cone with a horizontal plane, you get a circle.If you tilt the
plane a bit, you get an ellipse (as in the bad clip art picture
on the right).If you tilt the plane more, so it never hits the
other side of the cone, you get a parabola.If the plane is
vertical, so it hits both cones, you get a hyperbola.

We are going to discuss each of these shapes in some detail. Specifically,
for each shape, we are going to provide...

A formal definition of the shape, and
The formula for graphing the shape

These two things—the definition, and the formula—may in many cases
seem unrelated. But you will be doing work in the text exercises to show,
for each shape, how the definition leads to the formula.



Conic Concepts -- Distance

The key mathematical formula for discussing all the shapes above is the
distance between two points.

Many students are taught, at some point, the “distance formula” as a magic
(and very strange-looking) rule. In fact, the distance formula comes directly
from a bit of intuition...and the Pythagorean Theorem.

The intuition comes in finding the distance between two points that have
one coordinate in common.

The distance between two points that have one coordinate in
common

The drawing shows the points (2,3) and (6,3). Finding the distance between
these points is easy: just count! Take your pen and move it along the paper,
starting at (2,3) and moving to the right. Let’s see…one unit gets you over
to (3,3); the next unit gets you to (4,3)...a couple more units to (6,3). The
distance from (2,3) to (6,3) is 4.

Of course, it would be tedious to count our way from (2,3) to (100,3). But
we don’t have to—in fact, you may have already guessed the faster way—
we subtract the x coordinates.

The distance from (2,3) to (6,3) is 6 − 2 = 4
The distance from (2,3) to (100,3) is 100 − 2 = 98

And so on. We can write this generalization in words:



Note:Whenever two points lie on a horizontal line, you can find the
distance between them by subtracting their x-coordinates.

This may seem pretty obvious in the examples given above. It’s a little less
obvious, but still true, if one of the x coordinates is negative.

The drawing above shows the numbers (-3,1) and (2,1). You can see that the
distance between them is 5 (again, by counting). Does our generalization
still work? Yes it does, because subtracting a negative number is the same
as adding a positive one.

The distance from (-3,1) to (2,1) is 2 − (−3) = 5

How can we express this generalization mathematically? If two points lie
on a horizontal line, they have two different x-coordinates: call them x1 and
x2. But they have the same y-coordinate, so just call that y. So we can
rewrite our generalization like this: “the distance between the points (x1,
y)
and (x2,
y) is x2–x1.” In our most recent example, x1 = –3, x2 = 2, and 
y = 1. So the generalization says “the distance between the points (-3,1)
and (2,1) is 2 − (−3)”, or 5.

But there’s one problem left: what if we had chosen x2 and x1 the other
way? Then the generalization would say “the distance between the points
(2,1) and (-3,1) is (–3)−2”, or -5. That isn’t quite right: distances can never
be negative. We get around this problem by taking the absolute value of the
answer. This guarantees that, no matter what order the points are listed in,
the distance will come out positive. So now we are ready for the correct
mathematical generalization:



Distance Between Two Points on a Horizontal Line
The distance between the points (x1,
y) and (x2,
y) is |x2–x1|

You may want to check this generalization with a few specific examples—
try both negative and positive values of x1 and x2. Then, to really test your
understanding, write and test a similar generalization for two points that lie
on a vertical line together. Both of these results will be needed for the more
general case below.

The distance between two points that have no coordinate in
common

So, what if two points have both coordinates different? As an example,
consider the distance from (–2,5) to (1,3).

The drawing shows these two points. The (diagonal) line between them has
been labeled d: it is this line that we want the length of, since this line
represents the distance between our two points.

The drawing also introduces a third point into the picture, the point (–2,3).
The three points define the vertices of a right triangle. Based on our earlier
discussion, you can see that the vertical line in this triangle is length 
|5– 3| = 2. The horizontal line is length |1– (–2)| = 3.

But it is the diagonal line that we want. And we can find that by using the
Pythagorean Theorem, which tells us that d2 = 22 + 32. So d = √13



If you repeat this process with the generic points (x1,
y1) and (x2,
y2) you
arrive at the distance formula:

Distance between any two points
If d is the distance between the points (x1,
y1) and (x2,y1), then
d2 = (x2 − x1)2 + (y2 − y1)2

x2–x1 is the horizontal distance, based on our earlier calculation. y2– y1 is
the vertical distance, and the entire formula is simply the Pythagorean
Theorem restated in terms of coordinates.

And what about those absolute values we had to put in before? They were
used to avoid negative distances. Since the distances in the above formulae
are being squared, we no longer need the absolute values to insure that all
answers will come out positive.



Circles
This module introduces the definition and formula of a circle, including
example problems.

The Definition of a Circle

You’ve known all your life what a circle looks like. You probably know
how to find the area and the circumference of a circle, given its radius. But
what is the exact mathematical definition of a circle? Before you read the
answer, you may want to think about the question for a minute. Try to think
of a precise, specific definition of exactly what a circle is.

Below is the definition mathematicians use.

Definition of a Circle
The set of all points in a plane that are the same distance from a given
point forms a circle. The point is known as the center of the circle, and the
distance is known as the radius.

Mathematicians often seem to be deliberately obscuring things by creating
complicated definitions for things you already understood anyway. But if
you try to find a simpler definition of exactly what a circle is, you will be
surprised at how difficult it is. Most people start with something like “a
shape that is round all the way around.” That does describe a circle, but it
also describes many other shapes, such as this pretzel:

So you start adding caveats like “it can’t cross itself” and “it can’t have any
loose ends.” And then somebody draws an egg shape that fits all your
criteria, and yet is still not a circle:

So you try to modify your definition further to exclude that... and by that
time, the mathematician’s definition is starting to look beautifully simple.



But does that original definition actually produce a circle? The following
experiment is one of the best ways to convince yourself that it does.
Experiment: Drawing the Perfect Circle

1. Lay a piece of cardboard on the floor.
2. Thumbtack one end of a string to the cardboard.
3. Tie the other end of the string to your pen.
4. Pull the string as tight as you can, and then put the pen on the

cardboard.
5. Pull the pen all the way around the thumbtack, keeping the string taut

at all times.

The pen will touch every point on the cardboard that is exactly one string-
length away from the thumbtack. And the resulting shape will be a circle.
The cardboard is the plane in our definition, the thumbtack is the center,
and the string length is the radius.

The purpose of this experiment is to convince yourself that if you take all
the points in a plane that are a given distance from a given point, the result
is a circle. We’ll come back to this definition shortly, to clarify it and to
show how it connects to the mathematical formula for a circle.

The Mathematical Formula for a Circle

You already know the formula for a line: y = mx + b. You know that m is
the slope, and b is the y-intercept. Knowing all this, you can easily answer
questions such as: “Draw the graph of y = 2x–3” or “Find the equation of a
line that contains the points (3,5) and (4,4).” If you are given the equation 
3x + 2y = 6, you know how to graph it in two steps: first put it in the
standard y = mx + b form, and then graph it.

All the conic sections are graphed in a similar way. There is a standard
form which is very easy to graph, once you understand what all the parts
mean. If you are given an equation that is not in standard form, you put it
into the standard form, and then graph it.



So, to understand the formula below, think of it as the y = mx + b of
circles.

Mathematical Formula for a Circle
(x–h)2 + (y– k)2 = r2 is a circle with center (h,k) and radius r

From this, it is very easy to graph a circle in standard form.

Example:
Graphing a Circle in Standard Form

Graph 
(x + 5)2 + (y– 6)2 = 10

The problem. We recognize it as being
a circle in standard form.

h = –5 

k = 6 
r2 = 10

You can read these variables straight
out of the equation, just as in 
y = mx + b. Question: how can we
make our equation’s (x + 5) look like
the standard formula’s (x − h)?
Answer: if h = −5. In general, h
comes out the opposite sign from the
number in the equation. Similarly, 
(y − 6) tells us that k will be positive
6.

Center: (–5,6) Radius:

√10

Now that we have the variables, we
know everything we need to know
about the circle.

And we can graph it!
√10 is, of



course, just a little over 3—so we
know where the circle begins and
ends.

Just as you can go from a formula to a graph, you can also go the other way.

Example:
Find the Equation for this Circle

Find the equation for a circle with
center at (15,-4) and radius 8. The problem.

(x − 15)2 + (y + 4)2 = 64 The solution, straight from
the formula for a circle.

If a circle is given in nonstandard form, you can always recognize it by
the following sign: it has both an x2 and a y2 term, and they have the same
coefficient.



–3x2– 3y2 + x– y = 5 is a circle: the x2 and y2 terms both have the
coefficient –3
3x2– 3y2 + x– y = 5 is not a circle: the x2 term has coefficient 3, and
the y2 has –3
3x2 + 3y = 5 is not a circle: there is no y2 term

Once you recognize it as a circle, you have to put it into the standard form
for graphing. You do this by completing the square... twice!

Example:
Graphing a Circle in Nonstandard Form

Graph 2x2 + 2y2– 12x + 28y– 12 = 0

The problem.
The equation
has both an x2

and a y2 term,
and they have
the same
coefficient (a
2 in this case):
this tells us it
will graph as a
circle.

x2 + y2– 6x + 14y– 6 = 0 Divide by the
coefficient
(the 2).
Completing
the square is
always easiest
without a



coefficient in
front of the
squared tem.

(x2– 6x) + (y2 + 14y) = 6

Collect the x
terms together
and the y
terms together,
with the
number on the
other side.

(x2– 6x + 9) + (y2 + 14y + 49) = 6 + 9 + 49
Complete the
square for
both x and y.

(x– 3)2 + (y + 7)2 = 64

Rewrite our
perfect
squares. We
are now in the
correct form.
We can see
that this is a
circle with
center at (3,–
7) and radius
8.
(*Remember
How the signs
change on h
and k!)

Once you have
the center and
radius, you
can
immediately



draw the
circle, as we
did in the
previous
example.

Going From the Definition of a Circle to the Formula

If you’re following all this, you’re now at the point where you understand
the definition of a circle...and you understand the formula for a circle. But
the two may seem entirely unconnected. In other words, when I said 
(x–h)2 + (y– k)2 = r2 is the formula for a circle, you just had to take my
word for it.

In fact, it is possible to start with the definition of a circle, and work from
there to the formula, thus showing why the formula works the way it does.

Let’s go through this exercise with a specific example. Suppose we want to
find the formula for the circle with center at (–2,1) and radius 3. We will
start with the definition: this circle is the set of all the points that are
exactly 3 units away from the point (–2,1). Think of it as a club. If a point
is exactly 3 units away from (–2,1), it gets to join the club; if it is not
exactly 3 units away, it doesn’t get to join.



You already know what the formula is going to be, but remember, in this
exercise we’re not going to assume that formula—we’re going to assume
nothing but the definition, and work our way to the formula. So here is our
starting point, the definition for this circle:

“The distance from (x,y) to (–2,1) is 3.”

Any point (x,
y) that meets this criterion is in our club. Using the distance
formula that we developed above, we can immediately translate this English
language definition into a mathematical formula. Recall that if xxxd is the
distance between the points (x1,
y1) and (x2,
y1), then 
(x2 − x1)2 + (y2 − y1)2 = d2 (Pythagorean Theorem). So in this
particular case,

(x + 2)2 + (y − 1)2 = 9

Note that this corresponds perfectly to the formula given above. In fact, if
you repeat this exercise more generically—using (h,
k) as the center instead
of (–2,1), and r as the radius instead of 3—then you end up with the exact
formula given above, (x–h)2 + (y– k)2 = r2.

For each of the remaining shapes, I’m going to repeat the pattern used here
for the circle. First I will give the geometric definition and then the
mathematical formula. However, I will not take the third step, of showing
how the definition (with the distance formula) leads to the formula: you will
do this, for each shape, in the exercises in the text.



Parabolas
This module discusses parabolas and how they relate to conic sections in
Algebra. Includes example problems.

The Definition of a Parabola

Based on the discussion of circles, you might guess that the definition of a
parabola will take the form: “The set of all points that...” and you would be
correct. But the definition of a parabola is more complicated than that of a
circle.

Definition of a Parabola
Take a point (called the focus) and a horizontal line (the directrix) that
does not contain that point. The set of all points in a plane that are the same
distance from the focus as from the directrix forms a parabola.

In the text, you begin with a specific example of this process. The focus is
(0,3) and the directrix is the line y = –3. If we use our “club” analogy
again, we could say that this time, a point is a member of our club if its
distance to (0,3) is the same as its distance to y = –3.

The resulting shape looks something like this:

You may recall that a circle is entirely defined by its center—but the center
is not, itself, a part of the circle. In a similar way, the focus and directrix
define a parabola; but neither the focus, nor any point on the directrix, is a



part of the parabola. The vertex, on the other hand—the point located
directly between the focus and the directrix—is a part of the parabola.

One of the obvious questions you might ask at this point is—who cares? It’s
pretty obvious that circles come up a lot in the real world, but parabolas? It
turns out that parabolas are more useful than you might think. For instance,
many telescopes are based on parabolic mirrors. The reason is that all the
light that comes in bounces off the mirror to the focus. The focus therefore
becomes a point where you can see very dim, distant objects.

The Formula of a Parabola

We’ve already graphed parabolas in a previous chapter. As you may recall,
we began with the simplest parabola, y = x2, and permuted it.

x2 + k moves it up by k
(x– h)2 moves it to the right by h
Multiplying by a number in front stretches the graph vertically
Multiplying by a negative number turns the graph upside-down.

Putting it all together, we arrive at:

Mathematical Formula for a Vertical Parabola
y = a(x– h)2 + k is a parabola with vertex (h,k). If a is positive, it opens
up; if a is negative, it opens down.

Parabolas can also be horizontal. For the most part, the concepts are the
same. The simplest horizontal parabola is x = y2, which has its vertex at



the origin and opens to the right—from there, you can permute it. The
directrix in this case is a vertical line.

Mathematical Formula for a Horizontal Parabola
x = a(y– k)2 + h is a parabola with vertex (h,k). If a is positive, it opens
to the right; if a is negative, it opens to the left.

At this point, there are two useful exercises that you may want to try.

First, compare the two equations. How are they alike, and how are they
different?

Second, consider the horizontal parabola equation as a set of permutations
of the basic form x = y2. What is k doing to the parabola, and why? How
about h, and a?



Ellipses
This module introduces the definition and formula of an ellipse, including
example problems.

The Definition of an Ellipse

An ellipse is a sort of squashed circle, sometimes referred to as an oval.

Definition of an Ellipse
Take two points. (Each one is a focus; together, they are the foci.) An
ellipse is the set of all points in a plane that have the following property: the
distance from the point to one focus, plus the distance from the point to the
other focus, is some constant.

They just keep getting more obscure, don’t they? Fortunately, there is an
experiment you can do, similar to the circle experiment, to show why this
definition leads to an elliptical shape.
Experiment: Drawing the Perfect Ellipse

1. Lay a piece of cardboard on the floor.
2. Thumbtack one end of a string to the cardboard.
3. Thumbtack the other end of the string, elsewhere on the cardboard.

The string should not be pulled taut: it should have some slack.
4. With your pen, pull the middle of the string back until it is taut.
5. Pull the pen all the way around the two thumbtacks, keeping the string

taut at all times.
6. The pen will touch every point on the cardboard such that the distance

to one thumbtack, plus the distance to the other thumbtack, is exactly
one string length. And the resulting shape will be an ellipse. The
cardboard is the “plane” in our definition, the thumbtacks are the
“foci,” and the string length is the “constant distance.”



Do ellipses come up in real life? You’d be surprised how often. Here is my
favorite example. For a long time, the orbits of the planets were assumed to
be circles. However, this is incorrect: the orbit of a planet is actually in the
shape of an ellipse. The sun is at one focus of the ellipse (not at the center).
Similarly, the moon travels in an ellipse, with the Earth at one focus.

The Formula of an Ellipse

With ellipses, it is crucial to start by distinguishing horizontal from
vertical.

Mathematical Formula for an Ellipse with its Center at the Origin

Horizontal Vertical

x2

a2 + y2

b2 = 1 (a>b) x2

b2 + y2

a2 = 1 (a>b)



And of course, the usual rules of permutations apply. For instance, if we
replace x with x − h, the ellipse moves to the right by h. So we have the
more general form:

Mathematical Formula for an Ellipse with its Center at xxx(h,k)

Horizontal Vertical

(x−h)2

a2 +
(y−k)2

b2 = 1 (a > b)
(x−h)2

b2 +
(y−k)2

a2 = 1 (a > b)

The key to understanding ellipses is understanding the three constants a, b,
and c.

Horizontal
Ellipse Vertical Ellipse

Where are the foci? Horizontally
around the center

Vertically around
the center

How far are the foci
from the center? c c

What is the “major
axis”?

The long
(horizontal) way
across

The long (vertical)
way across



Horizontal
Ellipse Vertical Ellipse

How long is the
major axis? 2a 2a

What is the “minor
axis?”

The short
(vertical) way
across

The short
(horizontal) way
across

How long is the
minor axis? 2b 2b

Which is biggest? a is biggest. a > b
, and a > c.

a is biggest. a > b,
and a > c.

crucial relationship a2 = b2 + c2 a2 = b2 + c2

The following example demonstrates how all of these concepts come
together in graphing an ellipse.

Example:
Graphing an Ellipse

Graph x2 + 9y2– 4x + 54y + 49 = 0 The problem.
We recognize
this as an
ellipse
because it
has an x2



and a y2

term, and
they both
have the
same sign
(both
positive in
this case) but
different
coefficients
(3 and 2 in
this case).

x2– 4x + 9y2 + 54y = −49

Group
together the 
x terms and
the y
terms,
with the
number on
the other
side.

(x2– 4x) + 9(y2 + 6y) = −49

Factor out
the
coefficients
of the
squared
terms. In this
case, there is
no x2

coefficient,
so we just
have to
factor out the
9 from the y
terms.



(x2– 4x + 4) + 9(y2 + 6y + 9) = −49 + 4 + 81 Complete the
square twice.
Remember,
adding 9
inside those
parentheses
is equivalent
to adding 81
to the left
side of the
equation, so
we must add
81 to the
right side of
the equation!

(x − 2)2 + 9(y + 3)2 = 36

Rewrite and
simplify.
Note,
however, that
we are still
not in the
standard
form for an
ellipse!

(x−2)2

36 +
(y+3)2

4 = 1

Divide by
36. This is
because we
need a 1 on
the right, to
be in our
standard
form!

Center: (2,–3) We read the
center from



the ellipse
the same way
as from a
circle.

a = 6
b = 2

Since the
denominators
of the
fractions are
36 and 4, a
and b are 6
and 2. But
which is
which? The
key is that,
for ellipses, 
a is always
greater than
b. The larger
number is a
and the
smaller is b.

Horizontal ellipse Going back
to the
equation, we
see that the 
a2 (the larger
denominator)
was under
the x, and
the b2 (the
smaller) was
under the y.
This means
our equation
is a



horizontal
ellipse. (In a
vertical
ellipse, the 
a2 would be
under the
y.)

c = √32 = 4√22
(approximately 5 1
2

)

We need c if
we are going
to graph the
foci. How do
we find it?
From the
relationship 
a2 = b2 + c2

which
always holds
for ellipses.

So now we
can draw it.
Notice a few
features:
The
major axis is
horizontal
since this is a
horizontal
ellipse. It
starts a to the
left of center,
and ends a to
the right of
center. So its
length is 2a,
or 12 in this
case.The
minor axis



starts b
above
the center
and ends b
below, so its
length is
4.The foci
are about 5 1

2
from the
center.



Hyperbolas
This module introduces the definition and formula of a hyperbola, including
example problems.

The Definition of a Hyperbola

A hyperbola is the strangest-looking shape in this section. It looks sort of
like two back-to-back parabolas. However, those shapes are not exactly
parabolas, and the differences are very important.

Surprisingly, the definition and formula for a hyperbola are very similar to
those of an ellipse.

Definition of a Hyperbola
Take two points. (Each one is a focus; together, they are the foci.) A
hyperbola is the set of all points in a plane that have the following property:
the distance from the point to one focus, minus the distance from the point
to the other focus, is some constant.

The entire definition is identical to the definition of an ellipse, with one
critical change: the word “plus” has been changed to “minus.”

One use of hyperbolas comes directly from this definition. Suppose two
people hear the same noise, but one hears it ten seconds earlier than the first
one. This is roughly enough time for sound to travel 2 miles. So where did
the sound originate? Somewhere 2 miles closer to the first observer than
the second. This places it somewhere on a hyperbola: the set of all points
such that the distance to the second point, minus the distance to the first, is
2.

Another use is astronomical. Suppose a comet is zooming from outer space
into our solar system, passing near (but not colliding with) the sun. What
path will the comet make? The answer turns out to depend on the comet’s
speed.



If the comet’s speed is low, it will
be trapped by the sun’s
gravitational pull. The resulting
shape will be an elliptical orbit.

If the comet’s speed is high, it
will escape the sun’s
gravitational pull. The resulting
shape will be half a hyperbola.

We see in this real life example, as in the definitions, a connection between
ellipses and hyperbolas.

The Formula of an Hyperbola

With hyperbolas, just as with ellipses, it is crucial to start by distinguishing
horizontal from vertical. It is also useful to pay close attention to which
aspects are the same as ellipses, and which are different.

Horizontal Vertical

x2

a2 − y2

b2 = 1 y2

a2 − x2

b2 = 1



Mathematical Formula for a Hyperbola with its Center at the Origin

Horizontal Vertical

And of course, the usual rules of permutations apply. For instance, if we
replace x with
x– h, the hyperbola moves to the right by h. So we have the
more general form:

Formula for a Hyperbola with its Center at xxx(h,k)

Horizontal Vertical

(x−h)2

a2 −
(y−k)2

b2 = 1
(y−k)2

a2 −
(x−h)2

b2 = 1

The key to understanding hyperbolas is understanding the three constants a,
b, and c.



Horizontal
Hyperbola Vertical Hyperbola
Horizontal
Hyperbola Vertical Hyperbola

Where are the
foci?

Horizontally around
the center

Vertically around the
center

How far are the
foci from the
center?

c c

What is the
“transverse
axis”?

The (horizontal) line
from one vertex to the
other

The (vertical) line
from one vertex to
the other

How long is the
transverse axis? 2a 2a

Which is
biggest?

c is biggest. c > a,
and c > b.

c is biggest. c > a,
and c > b.

crucial
relationship c2 = a2 + b2 c2 = a2 + b2

Having trouble keeping it all straight? Let’s make a list of similarities and
differences.
Similarities between Hyperbolas and Ellipses

The formula is identical, except for the replacement of a+ with a-.
The definition of a is very similar. In a horizontal ellipse, you move
horizontally a from the center to the edges of the ellipse. (This defines
the major axis.) In a horizontal hyperbola, you move horizontally a
from the center to the vertices of the hyperbola. (This defines the
transverse axis.)
b defines a different, perpendicular axis.
The definition of c is identical: the distance from center to focus.

Differences Between Hyperbolas and Ellipses



The biggest difference is that for an ellipse, a is always the biggest of
the three variables; for a hyperbola, c is always the biggest. This should
be evident from looking at the drawings (the foci are inside an ellipse,
outside a hyperbola). However, this difference leads to several other
key distinctions.
For ellipses, a2 = b2 + c2. For hyperbolas, c2 = a2 + b2.
For ellipses, you tell whether it is horizontal or vertical by looking at
which denominator is greater, since a must always be bigger than b.
For hyperbolas, you tell whether it is horizontal or vertical by looking
at which variable has a positive sign, the x2 or the y2. The relative
sizes of a and b do not distinguish horizontal from vertical.

In the example below, note that the process of getting the equation in
standard form is identical with hyperbolas and ellipses. The extra last step
—rewriting a multiplication by 4 as a division by 1

4 —can come up with
ellipses as easily as with hyperbolas. However, it did not come up in the last
example, so it is worth taking note of here.

Example:
Putting a Hyperbola in Standard Form

Graph 3x2– 12y2– 18x– 24y + 12 = 0 The
problem. We
recognize
this as a
hyperbola
because it
has an x2

and a y2

term, and
have



different
signs (one is
positive and
one
negative).

3x2– 18x − 12y2– 24y = −12

Group
together the 
x terms and
the y terms,
with the
number on
the other
side.

3(x2– 6x)–12(y2 + 2y) = −12

Factor out
the
coefficients
of the
squared
terms. In the
case of the 
y2 for this
particular
equation, the
coefficient is
minus 12.

3(x2– 6x + 9)– 12(y2 + 2y + 1) = −12 + 27– 12 Complete
the square
twice.
Adding 9
inside the
first
parentheses
adds 27;
adding 1



inside the
second set
subtracts
12.

3(x − 3)2– 12(y + 1)2 = 3 Rewrite and
simplify.

(x − 3)2– 4(y + 1)2 = 1

Divide by 3,
to get a 1 on
the right.
Note,
however,
that we are
still not in
standard
form,
because of
the 4 that is
multiplied
by (y + 1)2.
The standard
form has
numbers in
the
denominator,
but not in
the
numerator.

(x − 3)2 −
(y+1)2

1
4

= 1 Dividing by 
1
4  is the
same as
multiplying
by 4, so this
is still the
same



equation.
But now we
are in
standard
form, since
the number
is on the
bottom.

However, the process of graphing a hyperbola is quite different from the
process of graphing an ellipse. Even here, however, some similarities lurk
beneath the surface.

Example:
Graphing a Hyperbola in Standard Form

Graph (x − 3)2–
(y+1)2

1
4

= 1
The problem, carried over
from the example above, now
in standard form.

Center: (3,–1)

Comes straight out of the
equation, both signs changed,
just as with circles and
ellipses.

a = 1 
b = 1
2

The square roots of the
denominators, just as with the
ellipse. But how do we tell



which is which? In the case of
a hyperbola, the a always goes
with the positive term. In this
case, the x2 term is positive,
so the term under it is a2.

Horizontal hyperbola

Again, this is because the x2

term is positive. If the y2 were
the positive term, the
hyperbola would be vertical,
and the number under the y2

term would be considered a2.

c = √12 + ( 1
2 )2 = √ 5

4 = √5
2

Remember that the
relationship is different: for
hyperbolas, c2 = a2 + b2

Now we begin drawing. Begin
by drawing the center at (3,–
1). Now, since this is a
horizontal ellipse, the vertices
will be aligned horizontally
around the center. Since a = 1
, move 1 to the left and 1 to
the right, and draw the vertices
there.

In the other direction—
vertical, in this case—we have
something called the
“conjugate axis.” Move up
and down by b ( 1

2  in this case)
to draw the endpoints of the
conjugate axis. Although not
part of the hyperbola, they will
help us draw it.



Draw a box that goes through
the vertices and the endpoints
of the conjugate axis. The box
is drawn in dotted lines to
show that it is not the
hyperbola.

Draw diagonal lines through
the corners of the box—also
dotted, because they are also
not the hyperbola.These lines
are called the asymptotes, and
they will guide you in drawing
the hyperbola. The further it
gets from the vertices, the
closer the hyperbola gets to
the asymptotes. However, it
never crosses them.

Now, at last, we are ready to
draw the hyperbola. Beginning
at the vertices, approach—but
do not cross!—the asymptotes.
So you see that the asymptotes
guide us in setting the width
of the hyperbola, performing a
similar function to the latus
rectum in parabolas.

The hyperbola is the most complicated shape we deal with in this course,
with a lot of steps to memorize.

But there is also a very important concept hidden in all that, and that is the
concept of an asymptote. Many functions have asymptotes, which you will



explore in far greater depth in more advanced courses. An asymptote is a
line that a function approaches, but never quite reaches. The asymptotes are
the easiest way to confirm that a hyperbola is not actually two back-to-back
parabolas. Although one side of a hyperbola resembles a parabola
superficially, parabolas do not have asymptotic behavior—the shape is
different.

Remember our comet? It flew into the solar system at a high speed, whipped
around the sun, and flew away in a hyperbolic orbit. As the comet gets
farther away, the sun’s influence becomes less important, and the comet gets
closer to its “natural” path—a straight line. In fact, that straight line is the
asymptote of the hyperbolic path.

Before we leave hyperbolas, I want to briefly mention a much simpler
equation: y = 1

x
. This is the equation of a diagonal hyperbola. The

asymptotes are the x and y axes.

Although the equation looks completely different, the shape is identical to
the hyperbolas we have been studying, except that it is rotated 45°.

y = 1
x



Conic Concepts -- Recap

If it has...
Then it’s
a... Example

Horizontal
or
Vertical?

No squared
terms Line 2x + 3y = 7

One
squared
term

Parabola 2x2 − 10x + 7y = 9

If you have
an x2 but
no y2,
you’re a
horizontal
parabola. If
you have a 
y2 but no 
x

2,
vertical.

Two
squared
terms with
the same
coefficient

Circle 3x2 + 3y2 + 6x + 3y = 2



If it has...
Then it’s
a... Example

Horizontal
or
Vertical?

Two
squared
terms with
different
coefficients
but the
same sign

Ellipse 2x2 + 3y2 + 6x + 6y = 12

The
difference
between
vertical
ellipses
and
horizontal
is based on
which
squared
term has
the larger
coefficient.

Two
squared
terms with
different
signs

Hyperbola 3x2– 3y2 + 6x + 3y = 2

The
difference
between
vertical
hyperbolas
and
horizontal
is based on
which
squared
term is
positive.

Note that all of this is based only on the squared terms! The other terms matter in
terms of graphing, but not in terms of figuring out what shape it is.



Sequences
An updated version of the Sequences module.

A sequence is a list of numbers: like 4,9,3,2,17.

An arithmetic sequence is a list where each number is generated by adding
a constant to the previous number. An example is 10,13,16,19,22,25. In this
example, the first term (t1) is 10, and the “common difference” (d)—that is,
the difference between any two adjacent numbers—is 3. Another example
is 25,22,19,16,13,10. In this example t1 = 25, and d = (–3). In both of
these examples, n (the number of terms) is 6.

A geometric sequence is a list where each number is generated by
multiplying a constant by the previous number. An example is
2,6,18,54,162. In this example, t1 = 2, and the “common ratio” (r)—that is,
the ratio between any two adjacent numbers—is 3. Another example is
162,54,18,6,2. In this example t1 = 162, and r = 1

3
. In both examples 

n = 5.

A recursive definition of a sequence means that you define each term
based on the previous. So the recursive definition of an arithmetic sequence
is tn = tn−1 + d, and the recursive definition of a geometric sequence is 
tn = rtn−1.

An explicit definition of an arithmetic sequence means you define the nth

term without making reference to the previous term. This is more useful,
because it means you can find (for instance) the 20th term without finding
all the other terms in between.

To find the explicit definition of an arithmetic sequence, you just start
writing out the terms. The first term is always t1. The second term goes up
by d so it is t1 + d. The third term goes up by d again, so it is (t1 + d) + d,
or in other words, t1 + 2d. So we get a chart like this.



t1 t2 t3 t4 t5

t1 t1 + d t1 + 2d t1 + 3d t1 + 4d

…and so on. From this you can see the generalization that 
tn = t1 + (n − 1)d, which is the explicit definition we were looking for.

The explicit definition of a geometric sequence is arrived at the same way.
The first term is t1; the second term is r times that, or t1r; the third term is r
times that, or t1r

2; and so on. So the general rule is tn = t1r
n−1. Read this

as: “t1 multiplied by r, (n– 1) times.”



Series
An updated version of the Series module.

A series is a list of numbers—like a sequence—but instead of listing them,
you add them all up. For instance, 4+9+3+2+17. (This particular series adds
up to 35.)

One way to compactly represent a series is with “summation notation,”
which looks like this:
Equation:

7

∑
n=3

n
2

The big funny-looking thing in the middle is the Greek letter uppercase
Sigma, and it indicates a series. To “unpack” this notation, start counting at
the bottom (n = 3), and stop when you reach the stop (n = 7). For each
term, plug that value of n into the given formula (n2). So this particular
formula, which we can read as “the sum as n goes from 3 to 7 of n2”,
simply means:

32 + 42 + 52 + 62 + 72

Arithmetic Series

If you add up all the terms of an arithmetic sequence, you have an
arithmetic series. For instance, 10 + 13 + 16 + 19 + 22 + 25 = 105.

There is a “trick” that can be used to add up the terms of any arithmetic
series. While this trick may not save much time with a 6-item series like the
one above, it can be very useful if adding up longer series. The trick is to
work from the outside in.

Consider the example given above: 10 + 13 + 16 + 19 + 22 + 25.
Looking at the first and last terms, 10 + 25 = 35. Going in, to the second



and next-to-last terms, 13 + 22 = 35. Finally, the two inside numbers 
16 + 19 = 35. So we can see that the sum of the whole thing is 3*35.

Pause here and check the following things.

You understand the calculation that was done for this particular
example.
You understand that this “trick” will work for any arithmetic series.
You understand that this trick will not work, in general, for series that
are not arithmetic.

If we apply this trick to the generic arithmetic series, we get a formula that
can be used to sum up any arithmetic series.

Every arithmetic series can be written as follows:

t1 + (t1 + d) + (t1 + 2d) … (tn − d) + tn

If you add the first and last terms, you get t1 + tn. Ditto for the second and
next-to-last terms, and so on. How many such pairs will there be in the
whole series? Well, there are n terms, so there are
 n2  pairs. So the sum for
the whole series is
 n2 (t1 + tn).

Geometric Series

If you add up all the terms of a geometric sequence, you have a geometric
series. The “arithmetic series trick” will not work on such a series; however,
there is a different trick we can use. As an example, let’s find the sum 
2 + 6 + 18 + 54 + 162.

We begin by calling the sum of this series S:

S = 2 + 6 + 18 + 54 + 162

Now, if you multiply both sides of this equation by 3, you get the first
equation I have written below. (The second equation below is just copied
from above.)



3S = 6 + 18 + 54 + 162 + 486 (*confirm this for yourself!)

S = 2 + 6 + 18 + 54 + 162

Here comes the key moment in the trick: subtract the two equations. This
leaves you with:

2S = 486 − 2, so S = 242

Once again, pause to convince yourself that this will work on all geometric
series, but only on geometric series.

Finally—once again—we can apply this trick to the generic geometric
series to find a formula. So we begin with
t1 + t1r + t1r

2 + t1r
3 … t1r

n−1 and write…

rS = t1r + t1r
2 + t1r

3 + t1r
4...t1r

n−1 + trr
n (*confirm this!)

S = t1 + t1r + t1r
2 + t1r

3 + ...t1r
n−1

Again, subtracting and solving, we get…

rS–S = t1r
n– t1

S(r − 1) = t1(rn–1)

S = t1
rn−1
r−1

So there we have it: a general formula for the sum of any finite geometric
series, with the first term t1, the common ratio r, and a total of n terms.



Proof by Induction
An updated version of the Proof by Induction module.

“Induction” is a method of proving something. Once again, let’s start with
an example.

Consider the sum ∑n

i=1
1

i(i+1)
. In other words,

1
1×2 + 1

2×3 + 1
3×4 +...+ 1

n(n+1)
. This is neither arithmetic nor geometric,

so none of our established tricks will work on it. How can we find the sum
of such a series?

Students are often surprised to hear that mathematicians typically begin
such problems by looking for a pattern. What does this series do for the
first few terms?

1 term: 1
1×2 = 1

2

2 terms: 1
1×2 + 1

2×3 = 1
2 + 1

6 = 2
3

3 terms: 1
1×2 + 1

2×3 + 1
3×4 = 2

3 + 1
12 = 3

4

At this point, you might already suspect the pattern. ½, ⅔, ¾...could it be
that the next term will be 4/5? Let’s find out.

4 terms: 1
1×2 + 1

2×3 + 1
3×4 + 1

4×5 = 3
4 + 1

20 = 4
5

It seems to work. The next term will probably be 5
6 , and then 6

7 , and so on.
Stop for a moment and make sure you see the pattern. Then, see if you can
express that pattern using mathematical notation instead of words. (Try this
yourself before you keep reading!)

The pattern can be expressed like this:

1
1×2

+ 1
2×3

+ 1
3×4

+...+ 1
n(n+1)

= n

n+1

Stop for a moment and make sure you know where we are. What we have
done is figured out a pattern to the answers, and shown that the pattern
works for n = 1, n = 2, n = 3, and n = 4. Based on this pattern, we



expect that if we added up 1
1×2 + 1

2×3 + 1
3×4 +...+ 1

100×101 , we would
get 100

101 .

But we have not yet proven anything. Maybe the pattern breaks down for 
n = 5. Or maybe it works for all the n-values from 1 to 1000, and then
suddenly stops working. We cannot possibly test all the values in the world,
one by one.

This is where the proof by induction comes in. It gives us a way to prove
that such a pattern will continue to hold forever.

An inductive proof, in general, consists of two steps. The first step is to
show that the pattern holds when n = 1. The second step is to show that,
whenever this pattern holds for some particular n, it will also hold for
the next n. If it holds for n = 5, then it must hold for n = 6. If it works for
n = 99, then it must also work for n = 100. Once we have proven that, in
general, then we will have shown that it works for all n values.

Example:
Proof by Induction
Inductive Proof of:

1
1×2 + 1

2×3 + 1
3×4 +...+ 1

n(n+1)
= n

n+1

First Step:
Show that it works for n = 1
1 term: 1

1×2 = 1
2

Second Step:
Show that it works for n + 1, assuming it works for some n
For n + 1, the left side of the equation looks like:

1
1×2 + 1

2×3 + 1
3×4 +...+ 1

n(n+1) + 1
(n+1)(n+1+1)

and the right side of the equation looks like:
Equation:



n + 1

n + 1 + 1

So we want to see if:
1

1×2
+ 1

2×3
+ 1

3×4
+...+ 1

n(n+1)
+ 1

(n+1)(n+2)

n+1
n+2

Now comes the key step.
If this pattern held for n, then the first n terms of the left side—that is, all
but the last (new) term—must add up to n

n+1 . So we do that substitution:
n

n+1 + 1
(n+1)(n+2)

n+1
n+2

All that remains, now, is the algebra to show that equation is true. Get a
common denominator:

n(n+2)

(n+1)(n+2)
+ 1

(n+1)(n+2)

(n+1)2

(n+1)(n+2)

n
2 + 2n + 1

(n + 1)2

The algebra here all comes from our unit on rational expressions: you may
want to take a moment to make sure you can follow it. But don’t let the
algebra distract you from the main point, which is what we proved in the



second step. We proved that the formula works for n + 1. But in the middle
of that proof, we assumed that it works for the previous term, n. In doing
so, we proved that if it works for 1, it must also work for 2; if it works for 2,
it must also work for 3; and so on. This amounts, then, to a proof that the
pattern holds forever.



Probability
An introduction to probability and the multiplication rule.

If you flip a coin, what is the chance of getting heads? That’s easy: 50/50.
In the language of probability, we say that the probability is 1

2
. That is to

say, half the time you flip coins, you will get heads.

So here is a harder question: if you flip two coins, what is the chance that
you will get heads both times? I asked this question of my son, who has
good mathematical intuition but no training in probability. His immediate
answer: 1

3
. There are three possibilities: two heads, one heads and one tails,

and two tails. So there is a 1

3
 chance of getting each possibility, including

two heads. Makes sense, right?

But it is not right. If you try this experiment 100 times, you will not find
about 33 “both heads” results, 33 “both tails,” and 33 “one heads and one
tails.” Instead, you will find something much closer to: 25 “both heads,” 25
“both tails,” and 50 “one of each” results. Why?

Because hidden inside this experiment are actually four different results,
each as likely as the others. These results are: heads-heads, heads-tails,
tails-heads, and tails-tails. Even if you don’t keep track of what “order” the
coins flipped in, heads-tails is still a different result from tails-heads, and
each must be counted.

And what if you flip a coin three times? In this case, there are actually eight
results. In case this is getting hard to keep track of, here is a systematic way
of listing all eight results.

First Coin Second Coin Third Coin End Result

Heads Heads Heads HHH



First Coin Second Coin Third Coin End Result

Tails HHT

Tails
Heads HTH

Tails HTT

Tails

Heads
Heads THH

Tails THT

Tails
Heads TTH

Tails TTT

When you make a table like this, the pattern becomes apparent: each new
coin doubles the number of possibilities. The chance of three heads in a row
is 1

8
. What would be the chance of four heads in row?

Let’s take a slightly more complicated—and more interesting—example.
You are the proud inventor of the SongWriter 2000tm.

The user sets the song speed (“fast,” “medium,” or “slow”); the volume
(“loud” or “quiet”); and the style (“rock” or “country”). Then, the
SongWriter automatically writes a song to match.



How many possible settings are there? You might suspect that the answer is
3 + 2 + 2 = 7, but in fact there are many more than that. We can see them
all on the following “tree diagram.”

If you start at the top of a tree like this and follow all the way down, you
end up with one particular kind of song: for instance, “fast loud country
song.” There are 12 different song types in all. This comes from
multiplying the number of settings for each knob: 3 × 2 × 2 = 12.

Now, suppose the machine has a “Randomize” setting that randomly
chooses the speed, volume, and style. What is the probability that you will
end up with a loud rock song that is not slow? To answer a question like
this, you can use the following process.

1. Count the total number of results (the “leaves” in the tree) that match
your criterion. In this case there are 2: the “fast-loud-rock” and
“medium-loud-rock” paths.

2. Count the total number of results: as we said previously, there are 12.
3. Divide. The probability of a non-slow loud rock song is 2/12, or 1/6.

Note that this process will always give you a number between 0 (no results
match) and 1 (all results match). Probabilities are always between 0 (for
something that never happens) and 1 (for something that is guaranteed to
happen).

But what does it really mean to say that “the probability is 1/6?” You aren’t
going to get 1/6 of a song. One way to make this result more concrete is to
imagine that you run the machine on its “Randomize” setting 100 times.
You should expect to get non-slow loud rock songs 1 out of every 6 times;
roughly 17 songs will match that description. This gives us another way to
express the answer: there is a 17% probability of any given song matching
this description.



The multiplication rule

We can look at the above problem another way.

What is the chance that any given, randomly selected song will be non-
slow? 2

3
. That is to say, 2 out of every three randomly chosen songs will be

non-slow.

Now...out of those 2

3
, how many will be loud? Half of them. The

probability that a randomly selected song is both non-slow and loud is half
of 2

3

, or 1

2
×

2

3
, or 1

3
.

And now, out of that 1

3
, how many will be rock? Again, half of them: 

1

2
×

1

3
. This leads us back to the conclusion we came to earlier: 1/6 of

randomly chosen songs will be non-slow, loud, rock songs. But it also gives
us an example of a very general principle that is at the heart of all
probability calculations:

When two events are independent, the probability that they will both
occur is the probability of one, multiplied by the probability of the
other.

What does it mean to describe two events as “independent?” It means that
they have no effect on each other. In real life, we know that rock songs are
more likely to be fast and loud than slow and quiet. Our machine, however,
keeps all three categories independent: choosing “Rock” does not make a
song more likely to be fast or slow, loud or quiet.

In some cases, applying the multiplication rule is very straightforward.
Suppose you generate two different songs: what is the chance that they will
both be fast songs? The two songs are independent of each other, so the
chance is 1

3
×

1

3
=

1

9
.

Now, suppose you generate five different songs. What is the chance that
they will all be fast? 1

3
×

1

3
×

1

3
×

1

3
×

1

3
, or ( 1

3
)5, or 1 chance in 243.

Not very likely, as you might suspect!



Other cases are less obvious. Suppose you generate five different songs.
What is the probability that none of them will be a fast song? The
multiplication rule tells us only how to find the probability of “this and
that”; how can we apply it to this question?

The key is to reword the question, as follows. What is the chance that the
first song will not be fast, and the second song will not be fast, and the
third song will not be fast, and so on? Expressed in this way, the question is
a perfect candidate for the multiplication rule. The probability of the first
song being non-fast is 2

3
. Same for the second, and so on. So the

probability is ( 2

3
)5, or 32/243, or roughly 13%.

Based on this, we can easily answer another question: if you generate five
different songs, what is the probability that at least one of them will be
fast? Once again, the multiplication rule does not apply directly here: it tells
us “this and that,” not “this or that.” But we can recognize that this is the
opposite of the previous question. We said that 13% of the time, none of the
songs will be fast. That means that the other 87% of the time, at least one
of them will!



Permutations
An introductions to permutations.

In the game of “Solitaire” (also known as “Patience” or
“Klondike”), seven cards are dealt out at the beginning, as
shown to the left: one face-up, and the other six face-down. (A
bunch of other cards are dealt out too, but let’s ignore that right
now.)A complete card deck has 52 cards. Assuming that all you
know is the 7 of spades showing, how many possible “hands”
(the other six cards) could be showing underneath?What makes
this a “permutations” problem is that order matters: if an ace is
hiding somewhere in those six cards, it makes a big difference if
the ace is on the first position, the second, etc. Permutations
problems can always be addressed as an example of the
multiplication rule, with one small twist.

QuestionHow many cards might be in the first position, directly under
the showing 7?
Answer51. That card could be anything except the 7 of spades.
QuestionFor any given card in first position, how many cards might
be in second position?
Answer50. The seven of spades, and the next card, are both “spoken
for.” So there are 50 possibilities left in this position.
QuestionSo how many possibilities are there for the first two positions
combined?
Answer51 × 50, or 2,550.
QuestionSo how many possibilities are there for all six positions?
Answer
51 × 50 × 49 × 48 × 47 × 46, or approximately 1.3 × 10

10;
about 10 billion possibilities!

This result can be expressed (and typed into a calculator) more concisely by
using factorials.



A “factorial” (written with an exclamation mark) means “multiply all the
numbers from 1 up to this number.” So 5! means 1 × 2 × 3 × 4 × 5 = 120

.

What is 7!

5!
? Well, it is 1×2×3×4×5×6×7

1×2×3×4×5
, of course. Most of the terms cancel,

leaving only 6 × 7 = 42.

And what about 51!

45!
? If you write out all the terms, you can see that the first

45 terms cancel, leaving 46 × 47 × 48 × 49 × 50 × 51, which is the
number of permutations we want. So instead of typing into your calculator
six numbers to multiply (or sixty numbers or six hundred, depending on the
problem), you can always find the answer to a permutation problem by
dividing two factorials. In many calculators, the factorial option is located
under the “probability” menu for this reason.



Combinations
An introduction to combinations.

Let’s start once again with a deck of 52 cards. But this time, let’s deal out a
poker hand (5 cards). How many possible poker hands are there?

At first glance, this seems like a minor variation on the Solitaire question
above. The only real difference is that there are five cards instead of six.
But in face, there is a more important difference: order does not matter.
We do not want to count “Ace-King-Queen-Jack-Ten of spades” and “Ten-
Jack-Queen-King-Ace of spades” separately; they are the same poker hand.

To approach such question, we begin with the permutations question: how
many possible poker hands are there, if order does matter? 
52 × 51 × 50 × 49 × 48, or 52!

47!
. But we know that we are counting every

possible hand many different times in this calculation. How many times?

The key insight is that this second question—“How many different times
are we counting, for instance, Ace-King-Queen-Jack-Ten of spades?”—is
itself a permutations question! It is the same as the question “How many
different ways can these five cards be rearranged in a hand?” There are five
possibilities for the first card; for each of these, four for the second; and so
on. The answer is 5! which is 120. So, since we have counted every
possible hand 120 times, we divide our earlier result by 120 to find that
there are 52!

(47!)(5!)
, or about 2.6 Million possibilities.

This question—“how many different 5-card hands can be made from 52
cards?”—turns out to have a surprisingly large number of applications.
Consider the following questions:

A school offers 50 classes. Each student must choose 6 of them to fill
out a schedule. How many possible schedules can be made?
A basketball team has 12 players, but only 5 will start. How many
possible starting teams can they field?
Your computer contains 300 videos, but you can only fit 10 of them on
your iPod. How many possible ways can you load your iPod?



Each of these is a combinations question, and can be answered exactly like
our card scenario. Because this type of question comes up in so many
different contexts, it is given a special name and symbol. The last question

would be referred to as “300 choose 10” and written ( ). It is

calculated, of course, as 300!

(290!)(10!)
 for reasons explained above.

300

10
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